Opendata, web and dolomites

CoMoQuant SIGNED

Correlated Molecular Quantum Gases in Optical Lattices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CoMoQuant project word cloud

Explore the words cloud of the CoMoQuant project. It provides you a very rough idea of what is the project "CoMoQuant" about.

readout    de    prepare    body    dy    kcs    mole    physical    interaction    gas    full    grees    synthesize    fermion    lecular    arise    filling    bosonic    mott    dimer    degenerate    molecules    single    create    atomic    perform    direction    ground    quantum    band    perfectly    polar    boson    view    planar    experiments    molecular    correlated    detection    plane    fidelity    engineering    cs    dynamics    optical    bosons    carry    transport    molecule    suited    namical    parallel    particles    entropy    local    spin    fermionic    magnetism    paring    transfer    superfluidity    microscopy    thousands    either    ular    cule    dimensions    situations    unity    posal    freedom    pro    created    simulator    disorder    atom    dipolar    dipole    precursors    gases    dimensional    forms    molec    engineered    fermions    techniques    pairs    phases    confined    fraction    near    simulations    geometry    mimic    interactions    insulating    lattice    coherent    mo    samples    probe   

Project "CoMoQuant" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET INNSBRUCK 

Organization address
address: INNRAIN 52
city: INNSBRUCK
postcode: 6020
website: http://www.uibk.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 2˙356˙117 €
 EC max contribution 2˙356˙117 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET INNSBRUCK AT (INNSBRUCK) coordinator 2˙356˙117.00

Map

 Project objective

In a quantum engineering approach we aim to create strongly correlated molecular quantum gases for polar molecules confined in an optical lattice to two-dimensional geometry with full quantum control of all de-grees of freedom with single molecule control and detection. The goal is to synthesize a high-fidelity molec-ular quantum simulator with thousands of particles and to carry out experiments on phases and dynamics of strongly-correlated quantum matter in view of strong long-range dipolar interactions. Our choice of mole-cule is the KCs dimer, which can either be a boson or a fermion, allowing us to prepare and probe bosonic as well as fermionic dipolar quantum matter in two dimensions. Techniques such as quantum-gas microscopy, perfectly suited for two-dimensional systems, will be applied to the molecular samples for local control and local readout. The low-entropy molecular samples are created out of quantum degenerate atomic samples by well-established coherent atom paring and coherent optical ground-state transfer techniques. Crucial to this pro-posal is the full control over the molecular sample. To achieve near-unity lattice filling fraction for the mo-lecular samples, we create two-dimensional samples of K-Cs atom pairs as precursors to molecule formation by merging parallel planar systems of K and Cs, which are either in a band-insulating state (for the fermions) or in Mott-insulating state (for the bosons), along the out-of-plane direction. The polar molecular samples are used to perform quantum simulations on ground-state properties and dy-namical properties of quantum many-body spin systems. We aim to create novel forms of superfluidity, to investigate into novel quantum many-body phases in the lattice that arise from the long-range molecular dipole-dipole interaction, and to probe quantum magnetism and its dynamics such as spin transport with single-spin control and readout. In addition, disorder can be engineered to mimic real physical situations.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMOQUANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMOQUANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Neurovulnerability (2019)

Molecular mechanisms underlying selective neuronal death in motor neuron diseases

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More