Opendata, web and dolomites

CoMoQuant SIGNED

Correlated Molecular Quantum Gases in Optical Lattices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CoMoQuant project word cloud

Explore the words cloud of the CoMoQuant project. It provides you a very rough idea of what is the project "CoMoQuant" about.

molecules    namical    confined    either    situations    particles    dipole    cs    unity    dipolar    pro    planar    dimer    create    prepare    molecular    transport    quantum    precursors    atom    dynamics    engineering    degenerate    thousands    mott    kcs    lattice    pairs    correlated    magnetism    paring    ground    molecule    physical    dimensional    transfer    full    simulator    interaction    ular    readout    superfluidity    parallel    mo    de    detection    techniques    optical    polar    probe    suited    simulations    fermionic    view    synthesize    phases    dy    perform    insulating    perfectly    interactions    microscopy    arise    carry    direction    plane    spin    dimensions    mimic    band    bosonic    near    entropy    gases    created    molec    coherent    lecular    experiments    filling    freedom    bosons    samples    cule    fermions    fidelity    single    disorder    geometry    body    boson    grees    posal    fraction    atomic    local    forms    mole    gas    engineered    fermion   

Project "CoMoQuant" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET INNSBRUCK 

Organization address
address: INNRAIN 52
city: INNSBRUCK
postcode: 6020
website: http://www.uibk.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 2˙356˙117 €
 EC max contribution 2˙356˙117 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET INNSBRUCK AT (INNSBRUCK) coordinator 2˙356˙117.00

Map

 Project objective

In a quantum engineering approach we aim to create strongly correlated molecular quantum gases for polar molecules confined in an optical lattice to two-dimensional geometry with full quantum control of all de-grees of freedom with single molecule control and detection. The goal is to synthesize a high-fidelity molec-ular quantum simulator with thousands of particles and to carry out experiments on phases and dynamics of strongly-correlated quantum matter in view of strong long-range dipolar interactions. Our choice of mole-cule is the KCs dimer, which can either be a boson or a fermion, allowing us to prepare and probe bosonic as well as fermionic dipolar quantum matter in two dimensions. Techniques such as quantum-gas microscopy, perfectly suited for two-dimensional systems, will be applied to the molecular samples for local control and local readout. The low-entropy molecular samples are created out of quantum degenerate atomic samples by well-established coherent atom paring and coherent optical ground-state transfer techniques. Crucial to this pro-posal is the full control over the molecular sample. To achieve near-unity lattice filling fraction for the mo-lecular samples, we create two-dimensional samples of K-Cs atom pairs as precursors to molecule formation by merging parallel planar systems of K and Cs, which are either in a band-insulating state (for the fermions) or in Mott-insulating state (for the bosons), along the out-of-plane direction. The polar molecular samples are used to perform quantum simulations on ground-state properties and dy-namical properties of quantum many-body spin systems. We aim to create novel forms of superfluidity, to investigate into novel quantum many-body phases in the lattice that arise from the long-range molecular dipole-dipole interaction, and to probe quantum magnetism and its dynamics such as spin transport with single-spin control and readout. In addition, disorder can be engineered to mimic real physical situations.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMOQUANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMOQUANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More