Opendata, web and dolomites

MOLUSC SIGNED

Molecules under Light-Matter Strong Coupling

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MOLUSC" data sheet

The following table provides information about the project.

Coordinator
CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE FONDATION 

Organization address
address: ALLEE G MONGE 8
city: STRASBOURG
postcode: 67000
website: http://www.icfrc.fr/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙468˙750 €
 EC max contribution 2˙468˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE FONDATION FR (STRASBOURG) coordinator 2˙468˙750.00

Map

 Project objective

When molecules or molecular materials are placed in the confined field of an optical mode which is resonant with a molecular transition, new hybrid light-matter states can be formed through strong coupling. This can occur even in the dark due to strong coupling with the vacuum electromagnetic field.  The hybrid light-matter states are collective states involving a large number of molecules and they strongly modify the energy levels of the system. While light-matter strong coupling has been extensively studied in optics and quantum physics, the consequences for chemistry and molecular material properties are just beginning to be investigated. The overall aim of this proposal is understand in greater detail the fundamental properties of the hybrid light-matter states and to investigate the implications for the properties of molecules and materials. More specific objectives are:  1) Deepen our understanding of the hybrid light-matter states from a physical chemistry perspective, including the dynamics and the thermodynamics. This is absolutely essential to develop this subject into a useful tool for chemists and materials scientists.  2) Demonstrate that the chemical reactions, including enzymatic ones, in the ground state can be modified by selectively coupling individual vibrational modes involved in the chemistry. This could have consequences for site selective chemistry, homogeneous and heterogeneous catalysis among others.  3) To further enhance molecular material properties, in particular functional solid state materials such as for organic electronics and photovoltaics. Here the key property is the extended nature of the hybrid light-matter state and the associated change in energy levels which modifies the absorption spectrum.  4) Explore the possibilities of modifying phase transitions of materials under strong coupling and of playing with the quantum features of the hybrid states such as their entanglement to study molecular processes with entangled molecules

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOLUSC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOLUSC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SUExp (2018)

Strategic Uncertainty: An Experimental Investigation

Read More  

T-GRAND-SLAM (2019)

Translating the Global Refined Analysis of Newly transcribed RNA and Decay rates by SLAM-seq

Read More  

ECOLBEH (2020)

The Ecology of Collective Behaviour

Read More