Opendata, web and dolomites

ReCaP SIGNED

Regeneration of Articular Cartilage using Advanced Biomaterials and Printing Technology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ReCaP project word cloud

Explore the words cloud of the ReCaP project. It provides you a very rough idea of what is the project "ReCaP" about.

cartilage    directing    nucleic    direct    recap    mediated    encourage    regenerate    biomaterial    integration    stem    rapid    damaged    joint    tissue    surface    lab    bioactive    infiltration    load    treatments    recognised    surgical    bone    hyaline    disruptive    experiences    anchored    articular    stable    revolutionise    intermediate    shifting    plasmid    wealth    leads    degeneration    retention    hypertrophy    nanomedicine    restoration    vascularised    pore    failed    building    utilising    regions    zonal    manufacturing    cell    overcome    osteoarthritis    structure    live    subchondral    injuries    ultimately    limited    maintaining    adult    scaffold    mechanical    dna    internationally    cells    had    host    acids    bearing    undergo    micrornas    initially    paradigm    calcified    surfacing    injured    solution    pioneering    biomaterials    procedure    architecture    hype    printed    layered    functionalised    platform    printing    3d    viral    area    repair    therapies    region    function    capacity    composition   

Project "ReCaP" data sheet

The following table provides information about the project.

Coordinator
ROYAL COLLEGE OF SURGEONS IN IRELAND 

Organization address
address: Saint Stephen's Green 123
city: DUBLIN
postcode: 2
website: www.rcsi.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 2˙999˙410 €
 EC max contribution 2˙999˙410 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2023-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ROYAL COLLEGE OF SURGEONS IN IRELAND IE (DUBLIN) coordinator 2˙999˙410.00

Map

 Project objective

Adult articular cartilage has a limited capacity for repair and when damaged or injured, experiences a loss of function which leads to joint degeneration and ultimately osteoarthritis. Biomaterials-based treatments have had very limited success due to the complex zonal structure of the articular joint, problems with biomaterial retention at the joint surface and achieving integration with the host tissue while also maintaining load bearing capacity. Stem cell therapies have also failed to live up to significant hype for a number of reasons including the challenges with achieving formation of stable hyaline cartilage which does not undergo hypertrophy. Building on a wealth of experience in the area, we propose a solution. ReCaP will initially overcome the problems with traditional biomaterials approaches by utilising recent advances in the area of advanced manufacturing and 3D printing to develop a 3D printed multi-layered scaffold with pore architecture, mechanical properties and bioactive composition tailored to regenerate articular cartilage, intermediate calcified cartilage and subchondral bone. Following this, and building on internationally recognised pioneering research in the applicant’s lab on scaffold-mediated nanomedicine delivery, this system will be functionalised for the controlled non-viral delivery of nucleic acids (including plasmid DNA and microRNAs) to direct host stem cells to produce stable hyaline cartilage at the joint surface and encourage the rapid formation of vascularised bone in the subchondral region. A new paradigm-shifting surgical procedure will then be applied to allow this system to be anchored to the joint surface while directing host cell infiltration and tissue repair, thus promoting restoration of even large regions of the damaged joint through a joint surfacing approach. The proposed ReCaP platform is thus a paradigm shifting disruptive technology that will revolutionise the way joint injuries are treated.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RECAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RECAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More