Opendata, web and dolomites


Spatio-temporal measurement and plasma-based control of crossflow instabilities for drag reduction

Total Cost €


EC-Contrib. €






Project "GLOWING" data sheet

The following table provides information about the project.


Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙460 €
 EC max contribution 1˙499˙460 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 1˙499˙460.00


 Project objective

Delay of laminar-turbulent flow transition on aircraft wings can potentially reduce aerodynamic drag by up to 15%, reducing emissions and fuel consumption considerably. The main cause of laminar-turbulent transition on commonly used swept wings is the development of crossflow (CF) instabilities. Despite their importance, our fundamental understanding of CF instabilities is limited due to inability of current measurement techniques to capture their complex and multi-scale spatio-temporal features. This severely limits our ability to delay CF transition, which is further impeded by the lack of simple, robust and efficient control concepts.

In this proposal I will achieve unprecedented spatio-temporal measurements of CF instabilities and develop a novel active flow control system that can successfully delay transition on swept wings. To achieve these goals, I bring forth a unique combination of cutting-edge technologies, such as tomographic particle image velocimetry, advanced plasma-based actuators and linear/non-linear stability and control theory.

Spatio-temporal volumetric velocity measurements of CF instabilities will be achieved at three important stages of their life, namely inception, growth and breakdown, providing breakthrough insights into the underlying physics of swept wing transition and turbulence production. The results will be used to postulate and validate linear and non-linear stability and control theory models and provide top benchmarks for high-fidelity CFD. The unprecedented wealth of information, enabled through these advances, will be used to design and demonstrate the first synergetic plasma-based laminar flow control system. This system will feature minimum-thickness plasma actuators, able to suppress the growth of CF instabilities and achieve and sustain considerable transition delay at high Reynolds numbers. These advances will finally enable robust and efficient laminar flow on future air transport.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLOWING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLOWING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


Co-production of seasonal representations for adaptive institutions

Read More  

TOROS (2019)

A Theory-Oriented Real-Time Operating System for Temporally Sound Cyber-Physical Systems

Read More  

EAST (2020)

Using Evolutionary Algorithms to Understand and Secure Web/Enterprise Systems

Read More