Opendata, web and dolomites

Topo2DEG SIGNED

Topological states in superconducting two-dimensional electron gases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Topo2DEG project word cloud

Explore the words cloud of the Topo2DEG project. It provides you a very rough idea of what is the project "Topo2DEG" about.

grown    manipulate    realizing    networks    peaks    modes    ing    advantage    nanowires    external    differently    superconductors    gases    territories    emphasis    individual    requirement    conventional    majorana    constitute    uncharted    josephson    scales    possibly    regime    splitting    geometries    full    superconducting    supervise    situ    nanowire    gap    critical    mainly    bias    branched    create    designs    readily    electron    physics    explored    interaction    junctions    tuning    experimentally    energy    last    orbit    matched    dimensional    electrodes    zero    vanishing    coupled    pairs    spatial    terminal    correction    date    physical    hybrid    difference    semiconductor    local    amenable    interacting    phenomena    2degs    wires    quantum    planar    superconductor    topological    spin    pave    geometry    magnetic    lattice    tests    advantageous    disorder    jjs    fermi    mostly    computing    employ    experiments    small    zeeman    fundamental    team    possibility    denominator   

Project "Topo2DEG" data sheet

The following table provides information about the project.

Coordinator
IBM RESEARCH GMBH 

Organization address
address: SAEUMERSTRASSE 4
city: RUESCHLIKON
postcode: 8803
website: www.zurich.ibm.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙999˙916 €
 EC max contribution 1˙999˙916 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IBM RESEARCH GMBH CH (RUESCHLIKON) coordinator 1˙999˙916.00

Map

 Project objective

I will experimentally investigate hybrid superconductor/semiconductor devices for realizing novel topological states of matter, with interest both in fundamental physics and quantum computing applications. Common denominator of the proposed experiments is a regime where the characteristic energy scales of the system, namely Fermi energy, spin orbit interaction correction, superconducting gap and Zeeman splitting are comparable to each other, resulting in unique and mostly uncharted physical territories. Differently from the most widespread use of semiconductor nanowires coupled to superconductors, I will employ novel hybrid two-dimensional electron gases (2DEGs) where the superconductor is grown in-situ and matched to the semiconductor lattice. This novel system was mainly developed by the team I supervise, during the last two years. Compared to the conventional nanowire-based approach, hybrid 2DEGs are readily available, characterized by very low disorder and more amenable to complex sample designs. The work will focus on: 1) Taking full advantage of the planar geometry to study spatial and non-local properties of individual Majorana wires, as well as branched geometries. These experiments will constitute critical tests to establish if the commonly observed zero bias peaks are indeed associated with Majorana modes and pave the way to complex networks of interacting Majorana wires, a requirement for quantum computing. 2) Studying topological phenomena in multi-terminal Josephson junctions (JJs), with particular emphasis on tuning the superconducting phase difference across electrodes pairs. Topological JJs offer a new and possibly advantageous path forward to create and manipulate Majorana modes not explored up to date, including the possibility to reach the topological regime for vanishing small external magnetic fields, useful for applications. Success of the proposal will constitute a key step forward towards topological quantum computing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPO2DEG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOPO2DEG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More