Opendata, web and dolomites

Topo2DEG SIGNED

Topological states in superconducting two-dimensional electron gases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Topo2DEG project word cloud

Explore the words cloud of the Topo2DEG project. It provides you a very rough idea of what is the project "Topo2DEG" about.

realizing    geometry    coupled    small    regime    last    2degs    physics    branched    fundamental    tuning    difference    dimensional    advantageous    energy    lattice    vanishing    mostly    matched    pave    supervise    team    superconductors    fermi    tests    pairs    advantage    splitting    magnetic    differently    emphasis    local    spatial    bias    constitute    territories    superconducting    grown    ing    semiconductor    gases    interaction    readily    conventional    phenomena    zero    requirement    planar    orbit    electrodes    geometries    possibility    josephson    nanowire    junctions    manipulate    modes    correction    designs    individual    amenable    hybrid    interacting    superconductor    nanowires    spin    experimentally    situ    topological    denominator    physical    disorder    uncharted    terminal    external    experiments    critical    jjs    explored    majorana    mainly    zeeman    electron    gap    create    networks    peaks    computing    full    date    wires    quantum    employ    possibly    scales   

Project "Topo2DEG" data sheet

The following table provides information about the project.

Coordinator
IBM RESEARCH GMBH 

Organization address
address: SAEUMERSTRASSE 4
city: RUESCHLIKON
postcode: 8803
website: www.zurich.ibm.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙999˙916 €
 EC max contribution 1˙999˙916 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IBM RESEARCH GMBH CH (RUESCHLIKON) coordinator 1˙999˙916.00

Map

 Project objective

I will experimentally investigate hybrid superconductor/semiconductor devices for realizing novel topological states of matter, with interest both in fundamental physics and quantum computing applications. Common denominator of the proposed experiments is a regime where the characteristic energy scales of the system, namely Fermi energy, spin orbit interaction correction, superconducting gap and Zeeman splitting are comparable to each other, resulting in unique and mostly uncharted physical territories. Differently from the most widespread use of semiconductor nanowires coupled to superconductors, I will employ novel hybrid two-dimensional electron gases (2DEGs) where the superconductor is grown in-situ and matched to the semiconductor lattice. This novel system was mainly developed by the team I supervise, during the last two years. Compared to the conventional nanowire-based approach, hybrid 2DEGs are readily available, characterized by very low disorder and more amenable to complex sample designs. The work will focus on: 1) Taking full advantage of the planar geometry to study spatial and non-local properties of individual Majorana wires, as well as branched geometries. These experiments will constitute critical tests to establish if the commonly observed zero bias peaks are indeed associated with Majorana modes and pave the way to complex networks of interacting Majorana wires, a requirement for quantum computing. 2) Studying topological phenomena in multi-terminal Josephson junctions (JJs), with particular emphasis on tuning the superconducting phase difference across electrodes pairs. Topological JJs offer a new and possibly advantageous path forward to create and manipulate Majorana modes not explored up to date, including the possibility to reach the topological regime for vanishing small external magnetic fields, useful for applications. Success of the proposal will constitute a key step forward towards topological quantum computing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPO2DEG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOPO2DEG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

AST (2019)

Automatic System Testing

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More