Opendata, web and dolomites

DYNAPOL SIGNED

Modeling approaches toward bioinspired dynamic materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DYNAPOL" data sheet

The following table provides information about the project.

Coordinator
POLITECNICO DI TORINO 

Organization address
address: CORSO DUCA DEGLI ABRUZZI 24
city: TORINO
postcode: 10129
website: www.polito.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙999˙623 €
 EC max contribution 1˙999˙623 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-11-01   to  2024-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    POLITECNICO DI TORINO IT (TORINO) coordinator 1˙999˙623.00
2    SCUOLA UNIVERSITARIA PROFESSIONALE DELLA SVIZZERA ITALIANA CH (MANNO) participant 0.00

Map

 Project objective

Nature uses self-assembly to build fascinating supramolecular materials, such as microtubules and protein filaments, that can self-heal, reconfigure, adapt or respond to specific stimuli in dynamic way. Building synthetic (polymeric) supramolecular materials possessing similar bioinspired properties via the same self-assembly principles is interesting for many applications. But their rational design requires a detailed comprehension of the molecular determinants controlling the assembly (structure, dynamics and properties) that is typically very difficult to reach experimentally. The aim of this project is to obtain structure-dynamics-property relationships to learn how to control the dynamic bioinspired properties of supramolecular polymers. I propose to unravel the molecular origin of the bioinspired behavior through massive multiscale modeling, advanced simulations and machine learning. First, we will develop ad hoc molecular models to study monomer assembly and the supramolecular structure of various types of self-assembled materials on multiple scales. Second, using advanced simulation approaches we will characterize the supramolecular dynamics of these materials (dynamic exchange of monomers) at high (submolecular) resolution. We will then study bioinspired properties such as the ability of various supramolecular materials to self-heal, adapt or reconfigure dynamically in response to specific stimuli. Our models will be systematically validated by comparison with the experimental evidence from our collaborators. Finally, we will use machine learning approaches to analyze our high-resolution simulations and to identify the key monomer features that control and determine the structure, dynamics and dynamic properties of a supramolecular material (i.e., structure-dynamics-property relationships). This research will produce unprecedented insight and fundamental models for the rational design of artificial dynamic materials with controllable bioinspired properties.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DYNAPOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DYNAPOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

NEUROPRECISE (2019)

Precision medicine in traumatic brain injury using individual neurosteroid response

Read More  

CARBOFLOW (2020)

Streamlined carbon dioxide conversion in ionic liquids – a platform strategy for modern carbonylation chemistry

Read More