Opendata, web and dolomites

SensifAI SIGNED

Understanding Videos Automatically with the SensifAI Deep Learning Technology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SensifAI project word cloud

Explore the words cloud of the SensifAI project. It provides you a very rough idea of what is the project "SensifAI" about.

captured    emotion    smartphones    119    microphone    delivers    accurately    cloud    pricing    moods    million    aurally    audio    automated    scientists    mit    extremely    semantic    services    automatically    recognition    trillion    eth    emerge    edge    recognize       millions    helping    customized    action    software    equipped    imaging    managed    bvba    contents    camera    audios    music    amazon    visual    objects    describing    80    traffic    ku    learning    scene    celebrities    actions    surrounding    manually    founded    believe    speech    genre    deep    alumni    trained    similarly    impaired    zurich    day    texts    people    limited    tag    landmark    sensifai    became    logos    starting    sport    video    images    tags    searchable    environment    description    ranging    international    minute    scenes    recognizing    leuven    videos    acquired    google    recognizes    wearable    europeans    tagging    unsafe    follow    web    05    contextual    internet    data    content    mobile    marketplace    landmarks    involvement    cutting    visually    imagine    accumulative    model    01    oem   

Project "SensifAI" data sheet

The following table provides information about the project.

Coordinator
SENSIFAI 

Organization address
address: DREVE DE NIVELLES 182/9
city: BRUSSELS
postcode: 1160
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website https://sensifai.com/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SENSIFAI BE (BRUSSELS) coordinator 50˙000.00

Map

 Project objective

Google has a value of $1 trillion because it has managed to make texts searchable. However, 80% of internet traffic is videos, audios and images and they are not searchable. Making videos searchable is extremely challenging. This is why most of the video tagging is done manually and the results in automated video recognition are still limited. Mobile video recognition is also starting to emerge. SensifAI has developed a cutting-edge audio-visual deep-learning technology trained on millions of videos to recognize audio and video content and to tag them accurately. SensifAI automatically tags videos, images and audio, which makes them searchable and can be customized for a range of use cases. We believe our approach to contextual video analysis is unique and on the leading edge as it recognizes, scenes, actions, celebrities, landmarks, logos, music genre, moods and emotion and speech. SensifAI delivers the video recognition technology on the cloud on the Amazon Web Services Marketplace and can be embedded on devices such as smartphones (by OEM’s). Our software just became available on the Amazon Web Services Marketplace where we follow a unit-based pricing model ranging from €0.01/minute for recognizing landmark images/objects/celebrities/unsafe contents to €0.05/minute for general tagging and action/sport recognition. SensifAI bvba was founded by three alumni and scientists from MIT, ETH Zurich and KU Leuven, who acquired an accumulative experience in audio-visual data processing through involvement in many international projects. Imagine a day when the 30 million visually impaired Europeans use a wearable camera equipped with a software describing them the surrounding environment automatically by recognizing the semantic concept of the captured video. includes the description of the scene, objects, and activities. Similarly, imaging a technology when the 119 million aurally impaired people use a wearable microphone equipped with a software helping them.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SENSIFAI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SENSIFAI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DeltaQon (2019)

IOT and cloud computing for online medical analysis service platform

Read More  

RoboSynFarm (2019)

Robotic Synthesis Farm

Read More  

Click and Spray (2020)

A SIMPLER, CHEAPER AND EASIER TO RECYCLE AEROSOL CONTAINER

Read More