Opendata, web and dolomites


Understanding Videos Automatically with the SensifAI Deep Learning Technology

Total Cost €


EC-Contrib. €






 SensifAI project word cloud

Explore the words cloud of the SensifAI project. It provides you a very rough idea of what is the project "SensifAI" about.

contextual    million    edge    05    international    imagine    managed    environment    scientists    marketplace    data    tag    imaging    music    google    eth    tagging    deep    tags    semantic    content    millions    smartphones    similarly    80    captured    audios    visually    video    landmark    founded    accurately    microphone    software    speech    searchable    description    celebrities    01    ranging    believe    people    images    cutting    videos    trained    automated    mobile    traffic    recognition    mit    bvba    became    recognizing    follow    119    alumni    sport    texts    oem    recognize    extremely    services    zurich    emerge    scene    impaired    emotion    minute    pricing    accumulative    involvement    audio    web    action    unsafe    surrounding    helping    genre    equipped    delivers    logos    wearable    internet    aurally    europeans    manually    recognizes    sensifai    actions    starting    day       acquired    leuven    visual    camera    learning    automatically    ku    amazon    describing    objects    landmarks    scenes    model    limited    cloud    contents    trillion    customized    moods   

Project "SensifAI" data sheet

The following table provides information about the project.


Organization address
address: DREVE DE NIVELLES 182/9
postcode: 1160
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2019-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SENSIFAI BE (BRUSSELS) coordinator 50˙000.00


 Project objective

Google has a value of $1 trillion because it has managed to make texts searchable. However, 80% of internet traffic is videos, audios and images and they are not searchable. Making videos searchable is extremely challenging. This is why most of the video tagging is done manually and the results in automated video recognition are still limited. Mobile video recognition is also starting to emerge. SensifAI has developed a cutting-edge audio-visual deep-learning technology trained on millions of videos to recognize audio and video content and to tag them accurately. SensifAI automatically tags videos, images and audio, which makes them searchable and can be customized for a range of use cases. We believe our approach to contextual video analysis is unique and on the leading edge as it recognizes, scenes, actions, celebrities, landmarks, logos, music genre, moods and emotion and speech. SensifAI delivers the video recognition technology on the cloud on the Amazon Web Services Marketplace and can be embedded on devices such as smartphones (by OEM’s). Our software just became available on the Amazon Web Services Marketplace where we follow a unit-based pricing model ranging from €0.01/minute for recognizing landmark images/objects/celebrities/unsafe contents to €0.05/minute for general tagging and action/sport recognition. SensifAI bvba was founded by three alumni and scientists from MIT, ETH Zurich and KU Leuven, who acquired an accumulative experience in audio-visual data processing through involvement in many international projects. Imagine a day when the 30 million visually impaired Europeans use a wearable camera equipped with a software describing them the surrounding environment automatically by recognizing the semantic concept of the captured video. includes the description of the scene, objects, and activities. Similarly, imaging a technology when the 119 million aurally impaired people use a wearable microphone equipped with a software helping them.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SENSIFAI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SENSIFAI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

Dyme (2019)

Dyme gives its users complete control over their financial situation. The Dyme application provides insight into users’ spending and subscriptions, and lets users cancel, negotiate, or switch any cont

Read More  

DeltaQon (2019)

IOT and cloud computing for online medical analysis service platform

Read More  

HAC (2019)


Read More