Opendata, web and dolomites

DisConn SIGNED

Neural drivers of functional disconnectivity in brain disorders

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DisConn project word cloud

Explore the words cloud of the DisConn project. It provides you a very rough idea of what is the project "DisConn" about.

understand    map    mouse    fmri    resting    physiologically    psychiatric    severe    neurophysiological    brain    recordings    link    substrates    fostered    pathophysiological    advent    cellular    breakdown    neuroimaging    mysterious    expanding    models    drivers    aberrant    index    developmental    generation    mechanisms    disorders    mechanistic    regional    peripheral    revealed    connectivity    relationships    rsfmri    perturbational    patterns    hubs    cortical    vulnerable    shared    functional    drives    coupling    macroscale    silencing    hierarchical    invariably    basis    translation    elucidate    network    description    synaptic    regions    combination    manipulate    disrupted    populations    connectopathies    communication    back    canonical    spontaneous    plasticity    imbalances    interpretable    disruption    treat    awake    impaired    directionally    pave    autism    probe    causal    uncover    neural    schizophrenia    events    excitatory    co    hallmark    inhibitory    manipulations    organization    unifying    deficits    learning    disconnectivity    synchronization    occurrence    almost    diagnose   

Project "DisConn" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙498˙125 €
 EC max contribution 1˙498˙125 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 1˙498˙125.00

Map

 Project objective

A rapidly expanding approach to understanding neural organization is to map patterns of spontaneous neural activity as an index of functional communication and connectivity across brain regions. Fostered by the advent of neuroimaging methods like resting-state fMRI (rsfMRI), this approach has revealed that functional connectivity is almost invariably disrupted in severe psychiatric disorders, such as autism or schizophrenia. However, the neural basis of such functional disconnectivity remains mysterious. What drives brain-wide functional synchronization? And are there shared pathophysiological mechanisms leading to impaired large-scale neural coupling? This project aims to elucidate the neural drivers of macroscale functional connectivity, as well as its breakdown in brain connectopathies. To achieve this goal, I propose a multi-scale perturbational approach to establish causal relationships between specific neural events and brain-wide functional connectivity via a novel combination of rsfMRI and advanced neural manipulations and recordings in the awake mouse. By directionally silencing functional hubs as well as more peripheral cortical regions, I will provide a hierarchical description of spontaneous network organization that will uncover regional substrates vulnerable to network disruption. I will also manipulate physiologically-distinct excitatory or inhibitory populations to probe a unifying mechanistic link between excitatory/inhibitory imbalances and aberrant functional connectivity. Finally, to account for the hallmark co-occurrence of synaptic deficits and functional disconnectivity in developmental disorders, I will link cellular mechanisms of synaptic plasticity and learning to the generation of canonical and aberrant spontaneous activity patterns. These studies will pave the way to a back-translation of aberrant functional connectivity into interpretable neurophysiological events and models that can help understand, diagnose or treat brain disorders.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISCONN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISCONN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More