Opendata, web and dolomites


Neural drivers of functional disconnectivity in brain disorders

Total Cost €


EC-Contrib. €






 DisConn project word cloud

Explore the words cloud of the DisConn project. It provides you a very rough idea of what is the project "DisConn" about.

perturbational    relationships    macroscale    mysterious    hubs    fmri    rsfmri    directionally    plasticity    autism    deficits    drives    fostered    learning    pave    neuroimaging    translation    vulnerable    cellular    index    hierarchical    psychiatric    recordings    basis    events    breakdown    synchronization    mechanisms    link    aberrant    imbalances    patterns    regional    back    description    elucidate    peripheral    generation    interpretable    silencing    treat    regions    inhibitory    physiologically    manipulations    spontaneous    neurophysiological    resting    causal    models    advent    drivers    manipulate    network    almost    populations    organization    excitatory    map    severe    diagnose    functional    expanding    schizophrenia    coupling    co    understand    revealed    disrupted    pathophysiological    substrates    neural    occurrence    communication    disruption    developmental    synaptic    cortical    mouse    mechanistic    combination    connectivity    awake    unifying    invariably    uncover    hallmark    connectopathies    brain    impaired    canonical    probe    disconnectivity    shared    disorders   

Project "DisConn" data sheet

The following table provides information about the project.


Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙498˙125 €
 EC max contribution 1˙498˙125 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

A rapidly expanding approach to understanding neural organization is to map patterns of spontaneous neural activity as an index of functional communication and connectivity across brain regions. Fostered by the advent of neuroimaging methods like resting-state fMRI (rsfMRI), this approach has revealed that functional connectivity is almost invariably disrupted in severe psychiatric disorders, such as autism or schizophrenia. However, the neural basis of such functional disconnectivity remains mysterious. What drives brain-wide functional synchronization? And are there shared pathophysiological mechanisms leading to impaired large-scale neural coupling? This project aims to elucidate the neural drivers of macroscale functional connectivity, as well as its breakdown in brain connectopathies. To achieve this goal, I propose a multi-scale perturbational approach to establish causal relationships between specific neural events and brain-wide functional connectivity via a novel combination of rsfMRI and advanced neural manipulations and recordings in the awake mouse. By directionally silencing functional hubs as well as more peripheral cortical regions, I will provide a hierarchical description of spontaneous network organization that will uncover regional substrates vulnerable to network disruption. I will also manipulate physiologically-distinct excitatory or inhibitory populations to probe a unifying mechanistic link between excitatory/inhibitory imbalances and aberrant functional connectivity. Finally, to account for the hallmark co-occurrence of synaptic deficits and functional disconnectivity in developmental disorders, I will link cellular mechanisms of synaptic plasticity and learning to the generation of canonical and aberrant spontaneous activity patterns. These studies will pave the way to a back-translation of aberrant functional connectivity into interpretable neurophysiological events and models that can help understand, diagnose or treat brain disorders.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISCONN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISCONN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Photopharm (2020)

Photopharmacology: From Academia toward the Clinic.

Read More  


The Mass Politics of Disintegration

Read More  

VictPart (2019)

Righting Victim Participation in Transitional Justice

Read More