Opendata, web and dolomites

BrightEyes SIGNED

Multi-Parameter Live-Cell Observation of Biomolecular Processes with Single-Photon Detector Array

Total Cost €


EC-Contrib. €






Project "BrightEyes" data sheet

The following table provides information about the project.


Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙861˙250 €
 EC max contribution 1˙861˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Fluorescence single-molecule (SM) detection techniques have the potential to provide insights into the complex functions, structures and interactions of individual, specifically labelled biomolecules. However, current SM techniques work properly only when the biomolecule is observed in controlled environments, e.g., immobilized on a glass surface. Observation of biomolecular processes in living (multi)cellular environments – which is fundamental for sound biological conclusion – always comes with a price, such as invasiveness, limitations in the accessible information and constraints in the spatial and temporal scales. The overall objective of the BrightEyes project is to break the above limitations by creating a novel SM approach compatible with the state-of-the-art biomolecule-labelling protocols, able to track a biomolecule deep inside (multi)cellular environments – with temporal resolution in the microsecond scale, and with hundreds of micrometres tracking range – and simultaneously observe its structural changes, its nano- and micro-environments. Specifically, by exploring a novel single-photon detectors array, the BrightEyes project will implement an optical system, able to continuously (i) track in real-time the biomolecule of interest from which to decode its dynamics and interactions; (ii) measure the nano-environment fluorescence spectroscopy properties, such as lifetime, photon-pair correlation and intensity, from which to extract the biochemical properties of the nano-environment, the structural properties of the biomolecule – via SM-FRET and anti-bunching – and the interactions of the biomolecule with other biomolecular species – via STED-FCS; (iii) visualize the sub-cellular structures within the micro-environment with sub-diffraction spatial resolution – via STED and image scanning microscopy. This unique paradigm will enable unprecedented studies of biomolecular behaviours, interactions and self-organization at near-physiological conditions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BRIGHTEYES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BRIGHTEYES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


Tumor suppressor pathways counteracting oncogenic immune receptor signaling in T-Cell Lymphoma

Read More  

CN Identity (2019)

Comprehensive anatomical, genetic and functional identification of cerebellar nuclei neurons and their roles in sensorimotor tasks

Read More  

EFMA (2018)

Equidistribution, fractal measures and arithmetic

Read More