Opendata, web and dolomites

CiliaTubulinCode SIGNED

Self-organization of the cilium: the role of the tubulin code

Total Cost €


EC-Contrib. €






 CiliaTubulinCode project word cloud

Explore the words cloud of the CiliaTubulinCode project. It provides you a very rough idea of what is the project "CiliaTubulinCode" about.

mutation    lab    structuring    proteins    organization    microscopy    function    encompassing    electron    functional    structural    microtubules    bidirectionality    exclusive    bidirectional    time    roles    fluorescent    sensory    regulates    exists    understand    anterograde    shows    signaling    machine    organizes    ift    techniques    hypotheses    atlas    mediated    enzymes    self    eukaryotic    malfunction    microtubule    cilium    tomography    suitable    cilia    sophisticated    structures    cells    generating    question    transport    dramatic    motility    specialized    ptm    translational    ideal    protein    combine    causes    post    modifications    differentiation    respective    space    intraflagellar    motors    retrograde    contributes    complexes    tubules    code    regulating    respectively    direction    resolution    player    assembly    regulate    cellular    cryo    sufficient    biochemical    pathologies    generally    imaging    answered    plays    adaptor    tubulin    vitro    ptms    functions    molecular    turn    assays   

Project "CiliaTubulinCode" data sheet

The following table provides information about the project.


Organization address
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙986˙406 €
 EC max contribution 1˙986˙406 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

This project aims at understanding of the role of the tubulin code for self-organization of complex microtubule based structures. Cilia turn out to be the ideal structures for the proposed research. A cilium is a sophisticated cellular machine that self-organizes from many protein complexes. It plays motility, sensory, and signaling roles in most eukaryotic cells, and its malfunction causes pathologies. The assembly of the cilium requires intraflagellar transport (IFT), a specialized bidirectional motility process that is mediated by adaptor proteins and direction specific molecular motors. Work from my lab shows that anterograde and retrograde IFT make exclusive use of the B-tubules and A-tubules, respectively. This insight answered a long standing question and shows that functional differentiation of tubules exists and is important for IFT. Tubulin post-translational modifications (PTMs) contribute to a tubulin code, making microtubules suitable for specific functions. Mutation of tubulin-PTM enzymes can have dramatic effects on cilia function and assembly. However, we do not understand of the role of tubulin-PTMs in cilia. Therefore, I propose to address the hypotheses that the tubulin code contributes to regulating bidirectional IFT motility, and more generally, that the tubulin code is a key player in structuring complex cellular assembly processes in space and time. This proposal aims at (i) understanding if tubulin-PTMs are necessary and/or sufficient to regulate the bidirectionality of IFT (ii) examining how the tubulin code regulates the assembly of cilia and (iii) generating a high-resolution atlas of tubulin-PTMs and their respective enzymes. We will combine advanced techniques encompassing state-of-the-art cryo-electron tomography, biochemical imaging, fluorescent microscopy, and in vitro assays to achieve molecular and structural understanding of the role of the tubulin code in the self-organization of cilia and of microtubule based cellular structures.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CILIATUBULINCODE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CILIATUBULINCODE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Life-Inspired (2019)

Life-inspired complex molecular systems controlled by enzymatic reaction networks

Read More  

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More  

NeuroMag (2019)

The Neurological Basis of the Magnetic Sense

Read More