Opendata, web and dolomites

GSYNCOR SIGNED

Graphene-syncronized coherent Raman scattering laser and microscope

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GSYNCOR project word cloud

Explore the words cloud of the GSYNCOR project. It provides you a very rough idea of what is the project "GSYNCOR" about.

illuminating    time    specialized    biomedical    weak    diagnostics    synchronize    visual    subjective    gsyncor    immediately    simplify    signal    image    doctors    quantitative    free    lasers    microscopy    grade    mode    complexity    judgement    slow    reducing    molecular    disruptive    complete    nonlinear    reliability    composition    followed    ultrafast    drawback    superposition    locked    graphene    ing    heavily    measuring    hurdle    tumour    doctor    histopathology    excisions    acquisition    proven    illuminated    optical    technique    molecules    pulsed    generating    sensitivity    adoption    prevented    laser    dual    scattering    therapeutic    passively    label    colour    setting    coherent    standard    costly    diagnostic    magnitude    patient    wavelength    obtain    operation    spontaneous    informed    speed    inspection    invasive    clinical    ultrashort    generates    light    staining    capability    orders    tissue    vivo    depending    broadband    imaging    decisions    diseased    healthy    discriminate    crs    prohibiting    consuming    hours    qualitative    synchronized    bulky    specificity    drastically    raman    pulses    handling   

Project "GSYNCOR" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙628 €
 EC max contribution 149˙628 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2020-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 149˙628.00

Map

 Project objective

The current standard of tumour diagnostics is histopathology, where excisions are taken from the tissue of a diseased patient, followed by staining and visual inspection. The process is time-consuming, costly, with low sensitivity and specificity. The results are subjective and qualitative, heavily depending on the judgement of the doctor. Spontaneous Raman microscopy is a label-free and non-invasive imaging technique, which enables to obtain objective and quantitative information on the tissue, by measuring its detailed molecular composition. It has proven capability to discriminate between healthy and tumour tissue and to identify the type and grade of tumour. Its main drawback is the very weak Raman signal, resulting in slow acquisition speed. This means that acquisition of a complete image would take up to several hours, prohibiting real-time and in vivo imaging. Coherent Raman scattering (CRS) generates the signal from a coherent superposition of the molecules in the tissue, illuminated by two synchronized ultrashort light pulses of different colour, thus improving by several orders of magnitude the acquisition speed. This enables real-time, in vivo imaging of the tissue allowing doctors to make informed diagnostic and/or therapeutic decisions immediately. The main hurdle of CRS microscopy, which has prevented its widespread adoption in a clinical setting, is the complexity and the high cost of the illuminating laser system, which is bulky and requires handling by specialized personnel. GSYNCOR aims to drastically simplify the laser system used for CRS microscopy, increasing its reliability and reducing its cost by exploiting the ultrafast and broadband nonlinear optical response of graphene. This enables not only pulsed (mode-locked) operation of a laser system, but also to passively synchronize two different lasers, generating the dual-wavelength pulses required for CRS. This will enable the uptake of CRS as a disruptive biomedical imaging technology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GSYNCOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GSYNCOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

iNANOVAC4CANCER (2019)

BIOHYBRID AND BIODEGRADABLE NANOVACCINES FOR CANCER IMMUNOTHERAPY

Read More