Opendata, web and dolomites

GSYNCOR SIGNED

Graphene-syncronized coherent Raman scattering laser and microscope

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GSYNCOR project word cloud

Explore the words cloud of the GSYNCOR project. It provides you a very rough idea of what is the project "GSYNCOR" about.

broadband    optical    crs    specialized    followed    specificity    light    wavelength    clinical    acquisition    colour    scattering    microscopy    measuring    molecules    illuminated    pulsed    diagnostic    lasers    operation    grade    obtain    image    technique    visual    speed    generates    excisions    illuminating    adoption    standard    slow    mode    coherent    simplify    depending    free    orders    staining    signal    time    proven    quantitative    imaging    immediately    graphene    superposition    biomedical    therapeutic    prohibiting    ultrashort    subjective    inspection    molecular    passively    judgement    complexity    handling    heavily    pulses    composition    spontaneous    dual    ultrafast    capability    label    complete    consuming    drawback    setting    reliability    tissue    raman    hours    diseased    generating    histopathology    drastically    vivo    disruptive    hurdle    diagnostics    bulky    patient    prevented    informed    decisions    magnitude    gsyncor    laser    ing    tumour    qualitative    discriminate    synchronize    sensitivity    locked    nonlinear    weak    reducing    doctor    synchronized    costly    invasive    doctors    healthy   

Project "GSYNCOR" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙628 €
 EC max contribution 149˙628 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2020-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 149˙628.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The current standard of tumour diagnostics is histopathology, where excisions are taken from the tissue of a diseased patient, followed by staining and visual inspection. The process is time-consuming, costly, with low sensitivity and specificity. The results are subjective and qualitative, heavily depending on the judgement of the doctor. Spontaneous Raman microscopy is a label-free and non-invasive imaging technique, which enables to obtain objective and quantitative information on the tissue, by measuring its detailed molecular composition. It has proven capability to discriminate between healthy and tumour tissue and to identify the type and grade of tumour. Its main drawback is the very weak Raman signal, resulting in slow acquisition speed. This means that acquisition of a complete image would take up to several hours, prohibiting real-time and in vivo imaging. Coherent Raman scattering (CRS) generates the signal from a coherent superposition of the molecules in the tissue, illuminated by two synchronized ultrashort light pulses of different colour, thus improving by several orders of magnitude the acquisition speed. This enables real-time, in vivo imaging of the tissue allowing doctors to make informed diagnostic and/or therapeutic decisions immediately. The main hurdle of CRS microscopy, which has prevented its widespread adoption in a clinical setting, is the complexity and the high cost of the illuminating laser system, which is bulky and requires handling by specialized personnel. GSYNCOR aims to drastically simplify the laser system used for CRS microscopy, increasing its reliability and reducing its cost by exploiting the ultrafast and broadband nonlinear optical response of graphene. This enables not only pulsed (mode-locked) operation of a laser system, but also to passively synchronize two different lasers, generating the dual-wavelength pulses required for CRS. This will enable the uptake of CRS as a disruptive biomedical imaging technology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GSYNCOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GSYNCOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More