Opendata, web and dolomites

GraFludicDevices SIGNED

Realization of water permeation kinetics in two-dimensional nanocapillaries to develop desalination and energy harvesting membranes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GraFludicDevices project word cloud

Explore the words cloud of the GraFludicDevices project. It provides you a very rough idea of what is the project "GraFludicDevices" about.

graphene    extensive    horizon    permeation    nanofluidics    investigation    slip    action    der    gain    selectivity    nanofluidic    kinetics    environmental    understand    ion    interlayer    smooth    building    waals    technologies    atomically    utilized    landau    force    sub    dimensional    rational    efficiency    van    gallery    systematic    nanochannel    technique    2d    energy    ultrasensitive    mechanistic    methodology    smart    implications    water    fabrication    flow    membranes    techniques    nanometre    transport    nm    purification    microscopy    angstrom    fast    nanochannels    materials    interesting    molecular    squire    ultrasonic    custom    big    complete    desalination    emergence    societal    membrane    exploration    experimental    resource    security    prepared    phenomena    fundamentally    optimize    lacking    capillaries    manifesting    dynamics    made    functional    employing    2020    demonstration    assembly    advancing    harvesting   

Project "GraFludicDevices" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 196˙707 €
 EC max contribution 196˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 196˙707.00

Map

 Project objective

Exploration of molecular transport in nanometre (nm) and sub-nm capillaries has big implications in the emergence of novel nanofluidic phenomena with interesting applications, including desalination, water purification, energy harvesting and smart membrane technologies. Recent advances in graphene and other two-dimensional (2D) materials based membranes with interlayer gallery of nanochannels have witnessed high water-ion selectivity and fast water permeation—manifesting their potential for desalination and smart membrane applications. However, a systematic and extensive experimental investigation of water permeation kinetics, including the demonstration of slip effects, in these atomically smooth 2D nanochannels is still lacking. Therefore, the main objective of the current research proposal is to gain a complete mechanistic understanding of water transport in nanochannels made of different 2D materials, which is crucial for the rational design of functional membranes for energy and environmental applications. This will be achieved by employing the state-of-the-art fabrication and experimental techniques based on van der Waals assembly, Landau-Squire flow measurement set-up and ultrasonic force microscopy. In this project, atomically smooth angstrom-scale 2D nanochannel devices will be prepared to investigate the flow dynamics of water using a custom-made ultrasensitive flow measurement technique. Throughout the project, advanced modelling techniques will be utilized to fundamentally understand transport and further optimize the system. Building on these findings, a scale-up methodology will be developed for the large-scale production of membranes for desalination and energy harvesting applications. The proposed research action will address Horizon 2020 Societal Challenges related to water security and resource efficiency while advancing the field of nanofluidics and membrane technology through the development of new fabrication and flow measurement methods.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAFLUDICDEVICES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAFLUDICDEVICES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More