Opendata, web and dolomites

GraFludicDevices SIGNED

Realization of water permeation kinetics in two-dimensional nanocapillaries to develop desalination and energy harvesting membranes

Total Cost €


EC-Contrib. €






 GraFludicDevices project word cloud

Explore the words cloud of the GraFludicDevices project. It provides you a very rough idea of what is the project "GraFludicDevices" about.

waals    complete    smooth    fundamentally    exploration    purification    assembly    kinetics    made    action    fast    sub    microscopy    societal    membrane    harvesting    landau    environmental    squire    nanofluidic    2020    permeation    membranes    techniques    materials    extensive    interlayer    investigation    desalination    rational    phenomena    force    slip    custom    manifesting    mechanistic    experimental    ion    employing    atomically    van    nanometre    gallery    big    dimensional    transport    horizon    methodology    selectivity    molecular    resource    nanochannel    demonstration    der    interesting    nm    optimize    prepared    capillaries    fabrication    building    dynamics    2d    technologies    understand    security    nanofluidics    technique    water    ultrasensitive    systematic    advancing    utilized    nanochannels    implications    smart    gain    flow    ultrasonic    energy    functional    lacking    emergence    graphene    efficiency    angstrom   

Project "GraFludicDevices" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 196˙707 €
 EC max contribution 196˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Exploration of molecular transport in nanometre (nm) and sub-nm capillaries has big implications in the emergence of novel nanofluidic phenomena with interesting applications, including desalination, water purification, energy harvesting and smart membrane technologies. Recent advances in graphene and other two-dimensional (2D) materials based membranes with interlayer gallery of nanochannels have witnessed high water-ion selectivity and fast water permeation—manifesting their potential for desalination and smart membrane applications. However, a systematic and extensive experimental investigation of water permeation kinetics, including the demonstration of slip effects, in these atomically smooth 2D nanochannels is still lacking. Therefore, the main objective of the current research proposal is to gain a complete mechanistic understanding of water transport in nanochannels made of different 2D materials, which is crucial for the rational design of functional membranes for energy and environmental applications. This will be achieved by employing the state-of-the-art fabrication and experimental techniques based on van der Waals assembly, Landau-Squire flow measurement set-up and ultrasonic force microscopy. In this project, atomically smooth angstrom-scale 2D nanochannel devices will be prepared to investigate the flow dynamics of water using a custom-made ultrasensitive flow measurement technique. Throughout the project, advanced modelling techniques will be utilized to fundamentally understand transport and further optimize the system. Building on these findings, a scale-up methodology will be developed for the large-scale production of membranes for desalination and energy harvesting applications. The proposed research action will address Horizon 2020 Societal Challenges related to water security and resource efficiency while advancing the field of nanofluidics and membrane technology through the development of new fabrication and flow measurement methods.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAFLUDICDEVICES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAFLUDICDEVICES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NeuroTick (2019)

The neuroscience of tickling: cerebellar mechanisms and sensory prediction

Read More  

EGeoCC (2019)

Ethnic geography and civil conflict

Read More  

Topo-circuit (2019)

Exploring topological phenomenon in RF circuits

Read More