Opendata, web and dolomites

IPQNet TERMINATED

Information Processing in Future Quantum Networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "IPQNet" data sheet

The following table provides information about the project.

Coordinator
FREIE UNIVERSITAET BERLIN 

Organization address
address: KAISERSWERTHER STRASSE 16-18
city: BERLIN
postcode: 14195
website: www.fu-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 162˙806 €
 EC max contribution 162˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FREIE UNIVERSITAET BERLIN DE (BERLIN) coordinator 162˙806.00

Map

 Project objective

We are now at a crucial point in building a next generation of quantum networks that will completely change the way we communicate. The discovery of quantum physics has been revolutionary in the way scientists understand the fundamental laws of nature, but we are now approaching an era where this will have an impact on society as a whole. We are already living in an interconnected world and are continuously dealing with issues of security and protection of our private data. Quantum technologies will therefore become more and more relevant due to their potential for improved security and faster computation, especially since the experimental state-of-affairs has reached the point of real communication scenarios. This research project will examine how to process information on a quantum network, from theory to experiment. This will be achieved by exploring composability and modular synthesis of quantum and classical routines as parts of larger protocols for secure multiparty computation. To succeed in this modular view, we need to (i) examine and verify the quantum resources (modules) and (ii) address the routing of information and construction of resources (connecting modules). Only after going through these steps can we return to the end-term goal of the project, which is to give novel protocols that can securely, and realistically be implemented in the near future. To this end, I will work closely with experimental groups and the industry, in order to implement the theoretical protocols and achieve a global perspective on how to process information in future quantum networks.

 Publications

year authors and title journal last update
List of publications.
2019 F. Hahn, A. Pappa, J. Eisert
Quantum network routing and local complementation
published pages: , ISSN: 2056-6387, DOI: 10.1038/s41534-019-0191-6
npj Quantum Information 5/1 2020-03-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IPQNET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IPQNET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More  

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More