Opendata, web and dolomites


Correlations in Large Quantum Systems

Total Cost €


EC-Contrib. €






Project "CLaQS" data sheet

The following table provides information about the project.


Organization address
address: RAMISTRASSE 71
city: ZURICH
postcode: 8006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙876˙050 €
 EC max contribution 1˙876˙050 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT ZURICH CH (ZURICH) coordinator 1˙876˙050.00


 Project objective

This project is devoted to the mathematical analysis of important physical properties of many-body quantum systems. We will be interested in properties of the ground state and low-energy excitations but also of non-equilibrium dynamics. We are going to consider systems with different statistics and in different regimes. The questions we are going to address have a common aspect: correlations among particles play a crucial role. Our main goal consists in developing new tools that allow us to correctly describe many-body correlations and to understand their effects. The starting point of our proposal are ideas and techniques that have been introduced in a series of papers establishing the validity of Bogoliubov theory for Bose gases in the Gross-Pitaevskii regime, and in a recent preprint showing how (bosonic) Bogoliubov theory can also be used to study the correlation energy of Fermi gases. In this project, we plan to develop these techniques further and to apply them to new contexts. We believe they have the potential to approach some fundamental open problem in mathematical physics. Among our most ambitious objectives, we include the proof of the Lee-Huang-Yang formula for the energy of dilute Bose gases and of the corresponding Huang-Yang formula for dilute Fermi gases, as well as the derivation of the Gell-Mann--Brueckner expression for the correlation energy of a high density Fermi system. Furthermore, we propose to work on long-term projects (going beyond the duration of the grant) aiming at a rigorous justification of the quantum Boltzmann equation for fermions in the weak coupling limit and at a proof of Bose-Einstein condensation in the thermodynamic limit, two very challenging and important questions in the field.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CLAQS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CLAQS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Photopharm (2020)

Photopharmacology: From Academia toward the Clinic.

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

VictPart (2019)

Righting Victim Participation in Transitional Justice

Read More