Opendata, web and dolomites

ERMADA SIGNED

Illuminating Earth’s microbial diversity and origins from metagenomes with deep learning

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ERMADA project word cloud

Explore the words cloud of the ERMADA project. It provides you a very rough idea of what is the project "ERMADA" about.

   99    10    origins    abstract    data    models    volumes    cultured       taxonomically    sequences    reference    marine    network    structure    govern    painstaking    biogeochemical    uncover    employ    latter    whereas    rank    cutting    capacities    circulation    classifying    evolution    hundreds    complete    pertaining    machine    community    bioinformatics    genome    uncharacterized    effort    biomass    stars    microbial    outnumbers    capture    composition    elucidate    twofold    trained    edge    patterns    nutrient    functions    microbiome    samples    similarity    dataset    regulating    sequence    shotgun    metabolic    classify    neural    staggering    footprint    represented    metagenomic    exceeds    environmental    emerged    serve    deeper    animals    prevalent    genes    microorganisms    terrestrial    earth    learning    unknown    big    sequencing    species    conventional    habitats    analyze    deep    networks    lineages    plants    levels    microbes    climate    environments    biodiversity    planet    terabytes    enzymes    milky    diversity    12    play    cycles    record    gain    roles    classified    galaxy    algorithms   

Project "ERMADA" data sheet

The following table provides information about the project.

Coordinator
BIOMEDICAL SCIENCES RESEARCH CENTER ALEXANDER FLEMING 

Organization address
address: FLEMING STREET 34
city: VARI-ATHENS
postcode: 16672
website: www.fleming.gr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Greece [EL]
 Total cost 247˙628 €
 EC max contribution 247˙628 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2023-03-09

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BIOMEDICAL SCIENCES RESEARCH CENTER ALEXANDER FLEMING EL (VARI-ATHENS) coordinator 247˙628.00

Map

 Project objective

The estimated number of microbes on our planet outnumbers the stars of the Milky Way galaxy and their biomass exceeds that of all plants and animals. Out of the 10^12 microbial species, only around 10^4 have been cultured, less than 10^5 species are represented by classified sequences, and a staggering estimated 99% of these microorganisms remain taxonomically unknown. Metagenomic shotgun sequencing has emerged as the most prevalent way of studying and classifying microorganisms from various habitats whereas genome analysis can be used to uncover the functions of genes, enzymes and metabolic pathways in a microbial community. This painstaking effort is crucial to understanding Earth's biodiversity, as microbes play important roles in regulating the planet’s biogeochemical cycles through processes that govern nutrient circulation in both terrestrial and marine environments. In this proposal, we will employ cutting edge bioinformatics and machine learning algorithms to analyze and elucidate Earth’s microbial diversity. We will use deep neural networks trained by large volumes of metagenomic sequences as well as big data methods to process hundreds of terabytes of data and taxonomically classify all uncharacterized metagenomic samples, by identifying their origins and habitats. Going beyond the capacities of conventional sequence similarity and comparison analyses, neural network models can capture higher level, abstract defining features and patterns in metagenomic sequences. The aim of this study is twofold: i) to gain a deeper understanding of the composition and structure of the microbiome at different rank levels and lineages and ii) to provide a complete record of the planet’s present microbial diversity footprint. The latter can serve as a reference dataset for future studies pertaining to microbiome evolution due to climate change or other long-term environmental factors.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ERMADA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ERMADA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More