Opendata, web and dolomites

BICACH TERMINATED

Novel bifunctional HAT catalysts for site-divergent C-H functionalizations mediated by photoredox catalysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BICACH project word cloud

Explore the words cloud of the BICACH project. It provides you a very rough idea of what is the project "BICACH" about.

active    bonds    chemical    bicach    offers    rely    event    trigger    aliphatic    functionalization    hydrogen    perspectives    tool    exhibit    light    photoredox    standard    position    restricted    mediated    synthetically    groups    moiety    catalysts    inert    render    group    selectively    date    functional    functionalizations    connected    activation    transfer    covalent    backbone    logic    almost    molecular    undistinguishable    catalyst    organocatalysts    single    flexible    proximity    selectivity    varying    substrate    perform    incorporating    wish    breakthrough    feedstocks    direct    site    interactions    molecules    selective    engage    divergent    synthesis    bond    atom    functionalize    spacer    possessing    chains    broad    hat    innovative    er    plan    organic    bifunctional    training    complexity    nature    inherently    catalysis    linear    paradigm    methylene    alkyl    positions    motif    ubiquitous    catalytic    shift    energy    dynamic    streamlined   

Project "BICACH" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET REGENSBURG 

Organization address
address: UNIVERSITATSSTRASSE 31
city: REGENSBURG
postcode: 93053
website: http://www.uni-regensburg.de/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 162˙806 €
 EC max contribution 162˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET REGENSBURG DE (REGENSBURG) coordinator 162˙806.00

Map

 Project objective

The direct catalytic functionalization of C-H bonds, an ubiquitous motif in organic molecules, represents a paradigm shift in the standard logic of organic synthesis. One of the major challenges to render this approach synthetically useful is to control the site-selectivity because most organic molecules exhibit several similar aliphatic C-H bonds. The functionalization of aliphatic C-H bond mediated by photoredox catalysis is a highly active field of research. To date, state-of-the-art site-selective methods in this field rely on substrate control which are inherently restricted to the functionalization of a single C-H bond within the substrate backbone. The innovative aspect of this research program is to target catalyst control to allow the site-selective functionalization of several different C-H bonds of a single substrate. Through this approach, we wish to go beyond the challenging problem of site-selectivity to enable site-divergent functionalizations. Such a breakthrough would provide a new tool for a flexible and streamlined access to molecular complexity from chemical feedstocks. To achieve our objectives, we plan to develop novel bifunctional catalysts incorporating one moiety able to engage into dynamic non-covalent interactions with the substrate and another functional group able to perform Hydrogen Atom Transfer (HAT) processes. These two functional groups are connected by an inert spacer which will position the HAT unit in proximity to a particular C-H bond of the substrate, thus controlling site-selectivity for the C-H activation event. By varying the nature of the spacer, we expect to selectively functionalize several different positions of linear alkyl chains possessing almost undistinguishable methylene C-H bonds. Overall, BICACH aims at using simple bifunctional organocatalysts and light energy to trigger highly challenging C-H functionalization processes. In addition, it offers a unique training to the ER with broad future research perspectives.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BICACH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BICACH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More