Opendata, web and dolomites

SNFWD SIGNED

A pH-Responsive Bionanohybrid Nanofibrous Wound Dressing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SNFWD" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG 

Organization address
address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054
website: www.uni-erlangen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 162˙806 €
 EC max contribution 162˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2021-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG DE (ERLANGEN) coordinator 162˙806.00

Map

 Project objective

To address the dynamic nature of wound healing, the wound care market is transitioning from classic protective barriers into advanced, active wound dressings, interacting with the wound by stimulating and managing cell migration and the sequence of healing events. In this regard, development of smart drug delivery wound dressings based on nanofibers, is a novel topic and of high importance due to the porosity, biomimicry and high surface area of such materials bringing about very optimum oxygen and water permeability, enhanced cell activity thus healing rate and better dissolution rate and ease of incorporation of drugs, respectively. However, to industrially realize such systems, there are still some challenges. Of the most important challenges is fabrication approach of such systems, that must not lead to either a burst release or damage to the drug during the process. As a novel idea, I aim to biomineralize a doped calcium phosphate drug carrier coating on the surface of nanofibers that could be efficiently loaded by drug molecules through electrostatic interactions. To accelerate the healing rate of chronic wounds, the wound medium is conventionally acidified by topical application of acids. This synthetic acidification along with natural trend of acidification of the wound as far as healing continues, can lead to dissolution of the drug carrier coating, thus release of drug molecules in a controlled manner. In this nanofibrous wound dressing, not only the nanofibrous structure biomimicking natural extracellular matrix of human tissues and smart drug delivery facilitates interaction with live cells and manages the healing process, respectively, but also cheap and fast electrospinning process for production of nanofibers promise an industrially adaptable approach. Thus, this proposed research would be an important novel step towards introduction of nanofibrous drug delivery wound dressings to industry.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SNFWD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SNFWD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ShaRe (2019)

The potential of Sharing Resources for mitigating carbon emissions and other environmental impacts

Read More  

FreeDigital (2019)

The impact of 'free' digital offers on individual behavior and its implications for consumer and data protection laws

Read More  

InvADeRS (2019)

Investigating the Activity of transposon Derived Regulatory Sequences in the placenta

Read More