Opendata, web and dolomites


High-Fidelity Photonic Quantum Gates

Total Cost €


EC-Contrib. €






Project "HIFIG" data sheet

The following table provides information about the project.


Organization address
address: PETERSPLATZ 1
city: BASEL
postcode: 4051

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT BASEL CH (BASEL) coordinator 191˙149.00


 Project objective

An efficient nonlinear quantum gate between two single-photons is highly desirable, as it will enable processing quantum information stored in optical photons. This capability is essential for building next generation of quantum networks, and optical quantum computing. However, such a device is constrained by lack of interaction between optical photons in natural environments. Interestingly, cavity quantum electrodynamics provides several paths towards achieving nonlinear interaction between photons. This action aims at realizing a high fidelity and efficient nonlinear gate between two single-photons using a compact solid-state design. Our approach is based on using the spin-state of a hole in an InAs/GaAs quantum dot to mediate the interaction between the photons. It has recently been demonstrated that the quantum coherence of the hole state can be on the order of several hundreds of nanoseconds. Also, the hole-states have been shown to have very coherent optical transitions which makes them an ideal candidate to realize spin-photon interfaces. In order to boost the interaction between the photons and the quantum dot, a novel microcavity structure will be used. The microcavity structure has recently been developed in the host group and shows spectacular features such as a Q-factor of 1 million, and a cooperativity of 100, making the combination of the hole-state and the microcavity structure an ideal platform to realize photonic gates. The results of this action will be highly instrumental for building quantum repeaters, and may open new directions for quantum computers based on optical photons. For instance, such a nonlinear gate may be combined with a linear network of coupled waveguides to enhance the simulation capabilities of the linear network. Finally, this action is aligned very well with the goals of the Quantum Technologies flagship initiative, and will contribute to the collective effort by the European researchers towards a lead in quantum technologies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HIFIG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HIFIG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)


Simulations of Topological Phases in Superconducting Circuits

Read More  

LipTransProMet (2019)

The multi-omics role of lipid transfer proteins in lipid metabolism

Read More  

SIMIS (2020)

Strongly Interacting Mass Imbalanced Superfluid with ultracold fermions

Read More