Opendata, web and dolomites

Lefko-Phos SIGNED

Binuclear Iridium(III) Complexes for White-Emitting OLEDs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Lefko-Phos project word cloud

Explore the words cloud of the Lefko-Phos project. It provides you a very rough idea of what is the project "Lefko-Phos" about.

displaying    limitations    emission    complexes    material    leads    cyclometalated    electronically    multiple    bridging    stand    efficiency    flat    white    successful    hi    entity    diodes    combination    consequently    area    iridium    luminescent    synthetic    linked    uncoupled    lighting    binuclear    multifunctional    efficient    interaction    energy    theoretical    ultimate    solution    actively    single    centres    excited    oled    27    emitter    flexible    generation    blue    simultaneous    asymp    conjugated    light    organic    time    guarantee    emitting    alternative    predicted    synthesis    electrical    leds    background    incorporation    woleds    competencies    scenario    stability    colour    synthesize    faced    union    generate    inorganic    imbalanced    overcome    dual    20    experimental    luminophores    ir    drawbacks    transfer    expertise    made    oleds    consolidated    strategy    host    manufacturing    conventional    orange    photophysics    researcher    instability    2030    inability    er    mutual    attempts    molecular    fabrication    emitters    device    internal   

Project "Lefko-Phos" data sheet

The following table provides information about the project.

Coordinator
CONSIGLIO NAZIONALE DELLE RICERCHE 

Organization address
address: PIAZZALE ALDO MORO 7
city: ROMA
postcode: 185
website: www.cnr.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 171˙473 €
 EC max contribution 171˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-15   to  2022-02-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) coordinator 171˙473.00

Map

 Project objective

The European Union set the ambitious target of increasing energy efficiency by 27% within 2030. Since ≈ 20% of the EU electrical energy is used for lighting, more efficient lighting concepts need to be developed. At present, inorganic light emitting diodes (LEDs) stand out as the best alternative to conventional lighting devices. In future, organic LEDs (OLEDs) are predicted to become the ultimate solution, since they allow fabrication of large-area flat and flexible devices; consequently, white-emitting OLEDs (WOLEDs) are actively investigated. Current WOLEDs require the use of multiple luminophores in a single device, but this leads to imbalanced white-light emission and colour instability, due to the different stability over time of each single emitter. Moreover, the incorporation of multiple emitters increases manufacturing costs. To overcome these drawbacks, attempts have been made to generate white-emission from a single multifunctional material. However, strong limitations were faced due to the complex synthetic procedures and the inability to control the excited-state properties of the emitter and its internal energy-transfer processes. In this scenario, we propose a new strategy for easy-to-synthesize binuclear cyclometalated iridium(III) complexes, displaying dual-emission for white-light generation from a single molecular entity. The strategy involves simultaneous generation of blue and orange emission from two electronically uncoupled Ir(III) centres, linked together by a non-conjugated bridging unit. This ambitious goal can be achieved due to the mutual interaction between the Experienced Researcher (ER) and the Host Institution (HI). While the ER has a strong background in the synthesis of luminescent complexes, the HI has a consolidated expertise in organic synthesis, theoretical and experimental photophysics, and in fabrication and testing of OLED devices. This combination of competencies will guarantee the successful implementation of this project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEFKO-PHOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEFKO-PHOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More