Opendata, web and dolomites

Lefko-Phos SIGNED

Binuclear Iridium(III) Complexes for White-Emitting OLEDs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Lefko-Phos project word cloud

Explore the words cloud of the Lefko-Phos project. It provides you a very rough idea of what is the project "Lefko-Phos" about.

incorporation    electrical    efficient    transfer    organic    woleds    cyclometalated    photophysics    light    guarantee    flexible    dual    emitting    scenario    synthesize    internal    made    white    researcher    luminescent    interaction    mutual    molecular    conjugated    combination    ir    inorganic    union    drawbacks    synthesis    leads    overcome    conventional    consequently    material    experimental    linked    entity    blue    20    expertise    area    successful    electronically    stand    theoretical    time    inability    generate    host    simultaneous    background    predicted    solution    actively    complexes    luminophores    uncoupled    instability    ultimate    flat    multifunctional    oleds    device    stability    limitations    lighting    bridging    single    generation    faced    hi    energy    imbalanced    manufacturing    leds    displaying    synthetic    27    iridium    asymp    er    fabrication    multiple    oled    binuclear    strategy    emitter    attempts    excited    colour    2030    diodes    emission    competencies    emitters    centres    alternative    efficiency    consolidated    orange   

Project "Lefko-Phos" data sheet

The following table provides information about the project.

Coordinator
CONSIGLIO NAZIONALE DELLE RICERCHE 

Organization address
address: PIAZZALE ALDO MORO 7
city: ROMA
postcode: 185
website: www.cnr.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 171˙473 €
 EC max contribution 171˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-15   to  2022-02-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) coordinator 171˙473.00

Map

 Project objective

The European Union set the ambitious target of increasing energy efficiency by 27% within 2030. Since ≈ 20% of the EU electrical energy is used for lighting, more efficient lighting concepts need to be developed. At present, inorganic light emitting diodes (LEDs) stand out as the best alternative to conventional lighting devices. In future, organic LEDs (OLEDs) are predicted to become the ultimate solution, since they allow fabrication of large-area flat and flexible devices; consequently, white-emitting OLEDs (WOLEDs) are actively investigated. Current WOLEDs require the use of multiple luminophores in a single device, but this leads to imbalanced white-light emission and colour instability, due to the different stability over time of each single emitter. Moreover, the incorporation of multiple emitters increases manufacturing costs. To overcome these drawbacks, attempts have been made to generate white-emission from a single multifunctional material. However, strong limitations were faced due to the complex synthetic procedures and the inability to control the excited-state properties of the emitter and its internal energy-transfer processes. In this scenario, we propose a new strategy for easy-to-synthesize binuclear cyclometalated iridium(III) complexes, displaying dual-emission for white-light generation from a single molecular entity. The strategy involves simultaneous generation of blue and orange emission from two electronically uncoupled Ir(III) centres, linked together by a non-conjugated bridging unit. This ambitious goal can be achieved due to the mutual interaction between the Experienced Researcher (ER) and the Host Institution (HI). While the ER has a strong background in the synthesis of luminescent complexes, the HI has a consolidated expertise in organic synthesis, theoretical and experimental photophysics, and in fabrication and testing of OLED devices. This combination of competencies will guarantee the successful implementation of this project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEFKO-PHOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEFKO-PHOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More  

SRIMEM (2018)

Super-Resolution Imaging and Mapping of Epigenetic Modifications

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More