Opendata, web and dolomites

Lefko-Phos SIGNED

Binuclear Iridium(III) Complexes for White-Emitting OLEDs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Lefko-Phos project word cloud

Explore the words cloud of the Lefko-Phos project. It provides you a very rough idea of what is the project "Lefko-Phos" about.

researcher    efficiency    efficient    area    entity    expertise    diodes    photophysics    electrical    material    er    emission    2030    simultaneous    stand    complexes    consequently    orange    luminophores    competencies    iridium    stability    displaying    molecular    guarantee    generate    27    drawbacks    instability    strategy    white    emitting    solution    emitters    leds    union    inorganic    luminescent    linked    excited    blue    synthetic    conventional    synthesis    multifunctional    20    bridging    combination    mutual    energy    uncoupled    successful    light    oled    device    made    manufacturing    internal    woleds    incorporation    host    cyclometalated    binuclear    actively    fabrication    ir    ultimate    colour    organic    conjugated    asymp    hi    time    alternative    leads    interaction    generation    predicted    consolidated    experimental    oleds    inability    single    theoretical    imbalanced    overcome    synthesize    limitations    attempts    background    flexible    electronically    multiple    faced    dual    emitter    transfer    lighting    centres    flat    scenario   

Project "Lefko-Phos" data sheet

The following table provides information about the project.

Coordinator
CONSIGLIO NAZIONALE DELLE RICERCHE 

Organization address
address: PIAZZALE ALDO MORO 7
city: ROMA
postcode: 185
website: www.cnr.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 171˙473 €
 EC max contribution 171˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-15   to  2022-02-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) coordinator 171˙473.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The European Union set the ambitious target of increasing energy efficiency by 27% within 2030. Since ≈ 20% of the EU electrical energy is used for lighting, more efficient lighting concepts need to be developed. At present, inorganic light emitting diodes (LEDs) stand out as the best alternative to conventional lighting devices. In future, organic LEDs (OLEDs) are predicted to become the ultimate solution, since they allow fabrication of large-area flat and flexible devices; consequently, white-emitting OLEDs (WOLEDs) are actively investigated. Current WOLEDs require the use of multiple luminophores in a single device, but this leads to imbalanced white-light emission and colour instability, due to the different stability over time of each single emitter. Moreover, the incorporation of multiple emitters increases manufacturing costs. To overcome these drawbacks, attempts have been made to generate white-emission from a single multifunctional material. However, strong limitations were faced due to the complex synthetic procedures and the inability to control the excited-state properties of the emitter and its internal energy-transfer processes. In this scenario, we propose a new strategy for easy-to-synthesize binuclear cyclometalated iridium(III) complexes, displaying dual-emission for white-light generation from a single molecular entity. The strategy involves simultaneous generation of blue and orange emission from two electronically uncoupled Ir(III) centres, linked together by a non-conjugated bridging unit. This ambitious goal can be achieved due to the mutual interaction between the Experienced Researcher (ER) and the Host Institution (HI). While the ER has a strong background in the synthesis of luminescent complexes, the HI has a consolidated expertise in organic synthesis, theoretical and experimental photophysics, and in fabrication and testing of OLED devices. This combination of competencies will guarantee the successful implementation of this project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEFKO-PHOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEFKO-PHOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More