Opendata, web and dolomites

ExcitingTopology SIGNED

Topological order beyond the equilibrium ground state: driven quantum matter and magnon excitation spectra

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ExcitingTopology project word cloud

Explore the words cloud of the ExcitingTopology project. It provides you a very rough idea of what is the project "ExcitingTopology" about.

parts    condensed    milestone    mendeleev    pertain    topological    principles    approaching    turning    engineering    fault    fractionalized    action    analytically    exist    uncover    exotic    insights    excitations    actual    context    appropriate    observables    tractable    unifying    multidisciplinary    predicted    ground    point    table    symmetries    realization    striking    computing    numerics    naturally    unlike    arranged    turn    aligning    edge    spts    theme    took    indications    structures    with    accompanied    classified    revolution    magnon    pioneering    crystal    modern    invariants    combining    chapter    spins    excitation    pave    insulators    phases    route    breaking    physical    quantum    physics    mathematical    periodically    story    nonlocal    spectra    tolerant    discovery    underlying    spt    prominent    magnet    topology    protected    appreciated    models    equilibrium    band    handles    electronic    domain    play    accordingly    symmetry    relate    envision    generalization    complementary    metallic    verge    classification    guide    ought    instead   

Project "ExcitingTopology" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2021-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 212˙933.00

Map

 Project objective

With the discovery of topological order, condensed matter physics has witnessed a revolution in how phases of matter ought to be defined and characterized. Unlike spins aligning in a magnet, topological phases are not classified by symmetry breaking but instead require nonlocal invariants that relate to the mathematical domain of topology. This theme took a turn with the finding that even common electronic band structures can feature topological invariants in the presence of appropriate symmetries. Ever since, many such symmetry protected topological (SPT) states have been predicted and arranged into a unifying table. These developments have been accompanied by the actual realization of various topological band insulators that feature striking properties including protected metallic edge states and proposed exotic fractionalized excitations, which may provide a route to fault-tolerant topological quantum computing. Now, the field is approaching a new exciting turning point as indications are emerging that other parts of the modern 'Mendeleev table' exist involving band structures that do not pertain to equilibrium ground states. On the verge of this milestone, this project will take a pioneering role and investigate such SPT phases in the context of periodically driven quantum systems and magnon excitation spectra. The objective is to uncover the underlying general classification principles, which will provide a guide to engineering novel states and accordingly new physics. To this end, we will apply a multidisciplinary approach combining state-of-the-art handles on SPT order, insights from analytically tractable models and numerics. In particular, we envision that naturally present crystal symmetries will play a prominent role here -one that has yet to be appreciated- much as they do in equilibrium SPTs. Together with a complementary generalization of physical observables, we expect this action to pave the way to a new chapter in the success story of SPT phases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EXCITINGTOPOLOGY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EXCITINGTOPOLOGY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ProgNanoRobot (2019)

Programmable NanoRobotics for Controlled Manipulation of Molecular Cargoes

Read More  

PARTOWNEU (2019)

The dark side of partial ownership and financial investment in Europe: What price to pay for consumers and society?

Read More  

WIRED (2019)

Wired: The Role of Infrastructure in the Tibetan Buddhist Revival in Contemporary China

Read More