Opendata, web and dolomites

ExcitingTopology SIGNED

Topological order beyond the equilibrium ground state: driven quantum matter and magnon excitation spectra

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ExcitingTopology project word cloud

Explore the words cloud of the ExcitingTopology project. It provides you a very rough idea of what is the project "ExcitingTopology" about.

point    numerics    models    insulators    unifying    computing    relate    uncover    topology    edge    engineering    equilibrium    tractable    appreciated    verge    nonlocal    story    pertain    tolerant    symmetries    physics    insights    took    multidisciplinary    classified    table    accordingly    band    accompanied    envision    revolution    excitation    topological    pave    instead    milestone    underlying    prominent    magnet    naturally    predicted    magnon    breaking    spts    turning    exotic    complementary    protected    appropriate    play    spectra    handles    crystal    indications    mathematical    action    actual    with    periodically    route    fault    condensed    classification    domain    invariants    guide    symmetry    modern    observables    mendeleev    chapter    pioneering    theme    generalization    ground    spins    physical    exist    aligning    unlike    parts    spt    ought    realization    electronic    quantum    fractionalized    context    metallic    principles    excitations    arranged    structures    striking    phases    analytically    combining    turn    discovery    approaching   

Project "ExcitingTopology" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2021-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 212˙933.00

Map

 Project objective

With the discovery of topological order, condensed matter physics has witnessed a revolution in how phases of matter ought to be defined and characterized. Unlike spins aligning in a magnet, topological phases are not classified by symmetry breaking but instead require nonlocal invariants that relate to the mathematical domain of topology. This theme took a turn with the finding that even common electronic band structures can feature topological invariants in the presence of appropriate symmetries. Ever since, many such symmetry protected topological (SPT) states have been predicted and arranged into a unifying table. These developments have been accompanied by the actual realization of various topological band insulators that feature striking properties including protected metallic edge states and proposed exotic fractionalized excitations, which may provide a route to fault-tolerant topological quantum computing. Now, the field is approaching a new exciting turning point as indications are emerging that other parts of the modern 'Mendeleev table' exist involving band structures that do not pertain to equilibrium ground states. On the verge of this milestone, this project will take a pioneering role and investigate such SPT phases in the context of periodically driven quantum systems and magnon excitation spectra. The objective is to uncover the underlying general classification principles, which will provide a guide to engineering novel states and accordingly new physics. To this end, we will apply a multidisciplinary approach combining state-of-the-art handles on SPT order, insights from analytically tractable models and numerics. In particular, we envision that naturally present crystal symmetries will play a prominent role here -one that has yet to be appreciated- much as they do in equilibrium SPTs. Together with a complementary generalization of physical observables, we expect this action to pave the way to a new chapter in the success story of SPT phases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EXCITINGTOPOLOGY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EXCITINGTOPOLOGY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COLEX (2019)

Coopetition and Legislation in the Spanish Netherlands (1598-1665)

Read More  

STUDYES (2019)

Structure and Ultrafast Dynamics in Deep Eutectic Solvents

Read More  

CORRELATION (2020)

Characterization and prediction of service-level traffic for future sliced mobile network

Read More