Opendata, web and dolomites

PepDNA-4D SIGNED

Four-dimensional self-assembly from peptides and DNA

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PepDNA-4D" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF KENT 

Organization address
address: THE REGISTRY CANTERBURY
city: CANTERBURY, KENT
postcode: CT2 7NZ
website: www.kent.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-07-05   to  2021-07-04

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF KENT UK (CANTERBURY, KENT) coordinator 224˙933.00

Map

 Project objective

Structural organisation in living systems is both dynamic (varies with time), and emergent (more than the sum of its parts). Different blends of these aspects can be said to contribute to all the uniquely impressive processes of cellular biology. In contrast, synthetic self-assembled chemical systems rarely express each of these properties, being largely based on single self-assembly systems (e.g. DNA hybridisation or metal coordination), and static (i.e. observed at its thermodynamic minimum). This Fellowship will combine the Fellow's skills in chemoenzymatic peptide synthesis with those of the Supervisor in combining complementary self-assembly systems to obtain emergent superstructures. These studies will result in the first instances of dynamic and emergent self-assembly in synthetic chemical systems. To achieve this aim, we will perform chemoenzymatic polymerisation of peptides from the end of DNA backbones. Both units are capable of their own self-assembly - DNA through hybridisation, and peptides via secondary structures. In any 'static' snapshot of the system, the indirect interplay of DNA and peptide assembly will lead to highly unusual nanostructures. However, this work will go beyond, to measure the type and extent of self-assembly during the enzymatic polymerisation process using cutting edge techniques such as liquid-cell electron microscopy. The resultant systems will recapitulate the properties of living matter in these respects. In the course of these studies, the Fellow's professional skills will be honed through mentorship, the practice of taking a leading role in research, and through training courses offered by the Host Institution. At the end of the Fellowship, he will be ideally placed to assume an independent academic position.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PEPDNA-4D" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PEPDNA-4D" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

MIRAGE (2019)

Measuring Interstellar Reactions of Aromatics by Gas-phase Experiments

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More