Opendata, web and dolomites

BOIL-MODE-ON SIGNED

unraveling nucleate BOILing: MODEling, mesoscale simulatiONs and experiments

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BOIL-MODE-ON project word cloud

Explore the words cloud of the BOIL-MODE-ON project. It provides you a very rough idea of what is the project "BOIL-MODE-ON" about.

contribution    clear    condenser    guarantees    frequency    dr    cope    inception    skill    always    phenomena    rate    nbsp    edge    cooling    drones    gas    highest    practical    routes    bubble    fundamental    remove    transfer    experimental    synergy    efficiency    fluxes    co2    shed    evacuate    technological    basic    bubbles    prospective    methodology    release    form    boil    upmost    supervise    numerical    mode    fluctuations    surface    career    hybrid    deploy    boiling    latent    fuel    light    its    dissolved    cells    campaign    depends    airplanes    solution    dollars    departure    boiler    recognised    satellite    underlying    idea    prof    contact    strategy    mesoscale    requested    world    experiments    billions    marengo    nucleation    changing    solutions    magaletti    complement    size    hot    wettability    represented    heat    he    mechanism    liquid    cutting    global    precisely    thermal    critical    faces    embedding    techniques    context    vapour    battery    cavitation   

Project "BOIL-MODE-ON" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRIGHTON 

Organization address
address: LEWES ROAD MITHRAS HOUSE
city: BRIGHTON
postcode: BN2 4AT
website: www.brighton.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-20   to  2021-05-19

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRIGHTON UK (BRIGHTON) coordinator 212˙933.00

Map

 Project objective

Cooling efficiency is of the upmost importance in several crucial technological applications, e.g. fuel cells and battery cooling, hybrid airplanes, drones and satellite thermal management. They have a value of several billions dollars around the world, with a critical contribution to global CO2 production. A promising approach to cope with the always higher heat fluxes requested is represented by phase changing systems which exploit the large latent heat associated with phase change to remove the heat from the hot surface. A robust and effective strategy is to deploy boiling. The basic underlying idea is simple: form vapour bubbles in a liquid in contact with the hot surface and evacuate them through a condenser. Its implementation, however, faces a number of challenges and requires solution to several fundamental problems. In any practical application the boiler efficiency depends on parameters, such as the frequency of bubble nucleation, their size, and the release rate from the hot surface. However, how to precisely control them is still not clear. BOIL-MODE-ON aims at addressing the underlying mechanism of bubble inception and departure during boiling, defining possible new routes and solutions both on the modelling and the practical implementation side. Dr. Magaletti will apply a cutting-edge methodology he developed in the context of cavitation phenomena, based on a mesoscale numerical modelling of the liquid-vapour system embedding thermal fluctuations. It will shed light on the effects of surface wettability and dissolved gas, which are two of the most complex and not yet understood topics in this field. A specific campaign of experiments will complement and support the analysis. The recognised experience of Prof. Marengo, who will supervise this project, on the experimental techniques for boiling guarantees the highest level of synergy and knowledge transfer with the applicant, further developing his research skill-set and enhancing his career prospective.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BOIL-MODE-ON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BOIL-MODE-ON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

uTSSreg (2020)

Regulation of mammalian genes by new classes of promoter proximal transcription start sites

Read More  

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More