Opendata, web and dolomites

ReproXimera SIGNED

Modelling in vivo lineage reprogramming of human astrocytes into induced neurons in the adult mouse brain

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ReproXimera project word cloud

Explore the words cloud of the ReproXimera project. It provides you a very rough idea of what is the project "ReproXimera" about.

complexity    progenitors    vivo    derive    underlying    fate    direct    that    conversions    markedly    counterparts    mouse    obtain    maturation    integration    glial    laboratory    constraints    me    takes    hallmarks    conversion    genome    unclear    model    human    studies    combine    ing    data    reprogrammed    largely    glia    murine    cell    plastic    sparse    directed    shown    editing    determines    crispr    genetic    humanized    mature    programs    host    adult    astroglia    stem    stages    brain    functional    differentiated    neurons    successful    differentiation    tissue    reprogramming    undergo    pioneered    cells    last    fundamental    induce    astroglial    cas9    question    decade    pluripotent    repair    strategies    differ    translation    plasticity    insights    identity    grafting    maintaining    developmental    hipsc    transplantable    lineage    astrocytes    context    implications    advantage    integrate    capacity    experimental    vitro   

Project "ReproXimera" data sheet

The following table provides information about the project.

Coordinator
KING'S COLLEGE LONDON 

Organization address
address: STRAND
city: LONDON
postcode: WC2R 2LS
website: www.kcl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2022-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON UK (LONDON) coordinator 224˙933.00

Map

 Project objective

Studies during last decade have shown that the genetic programs underlying cell identity are plastic even in fully differentiated cells. Direct lineage reprogramming takes advantage of this plasticity to induce cell fate conversions from one cell type into another. The host laboratory is among those who have pioneered successful lineage reprogramming of glial cells into induced functional neurons in vitro and in vivo. These studies have largely focused on murine glia. While there is sparse evidence that also human glia can be reprogrammed into induced neurons, it is unclear whether such lineage conversion can occur within the constraints of the in vivo tissue context by fully integrated mature human glia. In this project I propose an experimental model to study direct lineage reprogramming of human astrocytes into induced neurons at distinct developmental stages within the context of the adult mouse brain in vivo. This model is based on previous findings that show that human astroglial progenitors can integrate into the mouse brain following grafting, maintaining hallmarks that are specific to human astroglia which differ markedly in their complexity from their murine counterparts. Here I will combine this model system with the directed glial differentiation of induced human pluripotent stem cells (hiPSC) and state-of-the-art genome-editing via CRISPR-Cas9 technology. This will enable me to derive transplantable glial progenitors that can be induced to undergo lineage conversion in a humanized in vivo context at distinct maturation stages. With this approach I will obtain important insights into the fundamental question of how the state of maturation and functional integration determines the capacity of human astroglia to undergo lineage conversion into functional neurons in vivo. I expect that the data resulting from this approach will have important implications towards the translation of direct lineage reprogramming into new strategies for brain repair.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REPROXIMERA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REPROXIMERA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ACTION (2020)

Assessing Climate TransItion OptioNs: policy vs impacts

Read More  

EGeoCC (2019)

Ethnic geography and civil conflict

Read More  

RACING (2019)

Rapid access to functionalized cyclobutanes via ring expansion strategies

Read More