Opendata, web and dolomites

RESIST SIGNED

Resolving Effects of particle Shape and Inertia in Scalar Transport

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RESIST project word cloud

Explore the words cloud of the RESIST project. It provides you a very rough idea of what is the project "RESIST" about.

diatoms    nature    scalars    overlook    maximally    survey    function    completion    mechanics    oceanography    grow    uk    re    examples    record    fail    turbulent    germany    communities    effect    absorb    nutrients    micro    mass    career    deformed    researcher    successful    rates    heat    tumble    amidst    ion    rarely    governed    chaotic    solution    fluorescence    particles    material    turbulence    techniques    scientific    rigid    slip    chemical    concentrate    investigation    waters    expert    immersed    themselves    small    ellipsoidal    when    convective    name    neglecting    particle    orientate    osmotrophs    planktonic    mutually    underlying    track    experimental    macro    pairing    inertia    ocean    velocimetry    parametrically    surface    diffusion    pairs    exchange    transferred    crystals    resin    university    reacting    engineering    replete    simultaneously    flow    spherical    physics    laser    agitated    predict    mechanisms    beads    suspension    energy    transport    followed    transfer    convection    industrial    passive    strategies    marine    shape    beneficial    host    ratio    fluid    fundamental    fellow   

Project "RESIST" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF SOUTHAMPTON 

Organization address
address: Highfield
city: SOUTHAMPTON
postcode: SO17 1BJ
website: http://www.southampton.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF SOUTHAMPTON UK (SOUTHAMPTON) coordinator 212˙933.00

Map

 Project objective

When small, rigid particles are immersed in a turbulent fluid, they tumble, slip, concentrate and re-orientate themselves amidst a chaotic flow. Simultaneously, material or heat (passive scalars) may be transferred from the surface by convection and diffusion. Nature and engineering are replete with examples: planktonic osmotrophs absorb nutrients from turbulent ocean waters, and industrial processes grow crystals in agitated suspension, to name but two. Such particles are rarely ever spherical. Yet, present approaches overlook this, neglecting the convective transport mechanisms governed by shape and inertia and fail to predict their consequences, for example, in the adaptation strategies of marine diatoms. To address this problem, this project pairs a researcher with experience of fundamental turbulence physics from working in Germany with an expert in applied experimental fluid mechanics at a UK university, achieving a mutually beneficial exchange of knowledge. The Fellow will parametrically survey the effects of aspect ratio and inertia in the mass transfer to ellipsoidal particles, by reacting deformed ion-exchange resin beads in a turbulent solution to determine transport rates as a function of turbulence, fluid and particle properties. This will be followed by a detailed investigation of the underlying flow physics using state-of-the-art laser induced fluorescence and velocimetry techniques, allowing cause-and-effect mechanisms to be established between macro- and micro-scale effects. The project will target its dissemination activities at scientific communities where immediate impact is expected, including chemical and energy engineering and oceanography. This pairing and choice of project, together with the host’s capabilities and track record, will ensure successful completion of this ambitious research project and maximally support the Fellow’s career development.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RESIST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RESIST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

ROMANCE (2020)

StRategies fOr iMproving Agronomic practices based oN miCrobiomEs.

Read More