Opendata, web and dolomites

SCAFFOLD-NEEDS SIGNED

Commercialization of 3D scaffold platforms for neuronal cell culture models

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SCAFFOLD-NEEDS" data sheet

The following table provides information about the project.

Coordinator
ASTON UNIVERSITY 

Organization address
address: ASTON TRIANGLE
city: BIRMINGHAM
postcode: B4 7ET
website: www.aston.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 100˙000 €
 EC max contribution 100˙000 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-2018-2019-2020-03
 Funding Scheme CSA
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ASTON UNIVERSITY UK (BIRMINGHAM) coordinator 20˙000.00
2    LASER NANOFAB GMBH DE (GARBSEN) participant 80˙000.00

Map

 Project objective

The ongoing MESO-BRAIN project aims at the development of functional three-dimensional (3D) human stem cell derived neural networks on laser fabricated artificial scaffold platforms. Previous and contemporaneous attempts at generating 3D neural networks usually rely on biological matrices or gels providing randomly connected networks. In MESO-BRAIN, 3D scaffolds are integrated with conductive electrodes that enable both electrical stimulation of the network development and recording of the neural network activity. The development of such technological platform will be foundational for a new era of biological and medical research. In this FET Launchpad “Scaffold-Needs” project, we aim to make 3D scaffolds and 3D scaffold platforms with integrated electrodes commercially available via MESO-BRAIN spin-off company Laser nanoFab GmbH. We envisage that the 3D scaffold platforms will enable scientific and medical researchers to use them for a variety of studies e.g. as 3D neuronal cell models for investigations of fundamental mechanisms of human neuronal activity; in tests of pharmacological and toxicological compounds, in modelling of neuronal diseases, etc. There is a unique opportunity for the creation of a marketable product stemming from the work already performed and intended in MESO-BRAIN project. The commercialisation of MESO-BRAIN 3D scaffolds in collaboration with Laser nanoFab GmbH with FET Launchpad support represents an added value innovation which will raise the TRL level to TRL 5 and provide a solid basis for continued exploitation in the industrial sector. Depending upon the market analysis feedback, a 2nd round of optimisation and modification of the 3D scaffold platforms may be essential based upon special needs of potential customers to better target the market. A business plan for production and commercialisation of the 3D scaffolds and 3D scaffold platforms with integrated electrodes will be developed based upon the market analysis.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCAFFOLD-NEEDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCAFFOLD-NEEDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

FRINGE (2019)

Fluorescence and Reactive oxygen Intermediates by Neutron Generated electronic Excitation as a foundation for radically new cancer therapies

Read More  

CLASSY (2019)

Cell-Like ‘Molecular Assembly Lines’ of Programmable Reaction Sequences as Game-Changers in Chemical Synthesis

Read More  

ATEMPGRAD (2019)

Analysing Temperature Effects with a Mobile and Precise Gradient Device

Read More