Opendata, web and dolomites

STRELECOID SIGNED

Stretchable mesh-electrodes interfacing human iPSC brain organoids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STRELECOID project word cloud

Explore the words cloud of the STRELECOID project. It provides you a very rough idea of what is the project "STRELECOID" about.

3d    mean    human    self    parkinson    maturation    combination    possibility    assemble    organoids    cortical    shed    skin    electric    overwhelmingly    precisely    operate    overcome    humans    arrangements    epilepsy    advantages    ensembles    thalamic    refined    models    neurospheres    patient    correct    ipsc    anatomically    cell    stem    animal    cellular    psychiatric    performed    poorly    cultures    regions    physiological    plan    unprecedented    borne    efforts    variety    whereby    cells    transcriptomics    mental    alzheimer    lack    elicit    neural    clinical    neurons    sensory    stages    code    donors    genome    preparations    parallel    opens    shape    disease    pluripotent    proximity    central    developmental    successful    donor    input    thereby    translate    functional    single    disorders    vitro    invaluable    tissue    integrating    mesh    grows    animals    form    massively    brain    neurosphere    symbiotically    nervous    culture    engineering    electrodes    faithful    signature    bear    recent    sexes    inaccessible    genetic    seamlessly    integrate    assembloids    recruit    expand    plasticity    reprogram    male    environment    model    biomaterials    light    limitation   

Project "STRELECOID" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 251˙002 €
 EC max contribution 251˙002 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2022-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 251˙002.00
2    BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY US (STANFORD) partner 0.00

Map

 Project objective

Recent advances in cellular engineering allow to recruit skin cells from donors and reprogram them into neural stem cells. These induced pluripotent stem cells (iPSC) bear the genetic code of the human patient. Efforts to culture these cells in-vitro have been successful in creating a wide variety of 3D arrangements called neurospheres. Because the human central nervous system is by and large inaccessible at all developmental stages, these functional tissue preparations are invaluable. Furthermore, clinical studies performed in animal models are known to translate poorly to humans and therefore these systems provide unprecedented advantages: human neurons in a controlled environment that have the genetic signature of psychiatric or mental disorders borne by the donor patient, such as Alzheimer’s or Parkinson’s disease. Finally, compared to animal studies where overwhelmingly only male animals are studied, stem cell research can operate on both sexes. The combination of new biomaterials, genome engineering and massively parallel single-cell transcriptomics opens opportunities to precisely study human brain disease A new exciting development is the possibility to form so-called assembloids, whereby organoids of different brain regions, as for example cortical and thalamic neural ensembles, are brought in proximity and self-assemble into anatomically correct brain regions. These approaches are necessary to study disorders like epilepsy. However these cultures lack physiological sensory input which are key in the development of mental plasticity. Here we plan to overcome this limitation by integrating new mesh-based electrodes that integrate seamlessly into brain tissue and expand symbiotically with the neurosphere as it grows, and thereby have a spatially refined mean to measure but also elicit neural activity. This will shed light on how electric maturation of these neurospheres comes about and help shape them to an anatomically more faithful brain model.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRELECOID" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRELECOID" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

QoSIoTSmartCities (2019)

Quality of Service for the Internet of Things in Smart Cities via Predictive Networks

Read More  

FreeDigital (2019)

The impact of 'free' digital offers on individual behavior and its implications for consumer and data protection laws

Read More  

secretPOL (2019)

The PIDE and Portuguese Society under the Salazar Dictatorship 1945-1974: Fear, Self-Policing, Accommodation.

Read More  
lastchecktime (2020-10-22 21:19:50) correctly updated