Opendata, web and dolomites

2D-QuEST SIGNED

Chemical Structure, Photo Physics and Emission Control of Single-Photon Emitters in Two-Dimensional Materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 2D-QuEST project word cloud

Explore the words cloud of the 2D-QuEST project. It provides you a very rough idea of what is the project "2D-QuEST" about.

questions    1977    optical    solid    located    practical    dichalcogenides    ideal    nitride    silicon    boron    bright    photon    semiconducting    hexagonal    monolayers    transition    paradigm    types    nanotubes    materials    2d    density    electronic    optics    0d    occurs    centers    intrinsic    defect    excitons    thin    emitter    flexibility    advantages    technologies    stage    science    quality    light    1d    class    precision    computing    below    dimensional    fundamental    phenomenon    nitrogen    emission    delocalized    guide    beam    zero    brings    molecules    localized    natural    integration    atomically    demonstration    networks    unprecedented    suggesting    defects    2dqes    generation    exhibit    emitters    carbide    atomic    answers    nonclassical    single    extended    communications    chemical    structures    quantum    metal    energies    scalable    vacancy    first    desired    metrology    compatibility    positions    recombination    stable    carbon    deepen    sodium    material    foundation    exciton    sources    dots    diamond    emerged    atoms   

Project "2D-QuEST" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-07-16   to  2021-07-15

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 224˙933.00

Map

 Project objective

Single-photon sources are the foundation of quantum optical technologies, including quantum communications, computing and metrology. Since the first demonstration of single-photon emission from sodium atoms in a low-density atomic beam in 1977, this nonclassical phenomenon has been observed in various types of solid-state zero-dimensional (0D) and one-dimensional (1D) materials, such as single molecules, quantum dots, nitrogen-vacancy centers in diamond, silicon carbide, and carbon nanotubes.Very recently, a new class of single-photon emitter has emerged based on atomically thin two-dimensional (2D) materials, such as semiconducting transition metal dichalcogenides and hexagonal boron nitride monolayers. These novel single-photon emitters are due to the generation and recombination of excitons that are spatially localized by natural defects in 2D materials . Bright and stable light emission from these defect excitons occurs at photon energies below the delocalized exciton emission and thus exhibit ideal nonclassical single photon characteristics. Furthermore, their intrinsic presence within atomically thin 2D materials brings the advantages of the unprecedented materials compatibility and processing flexibility associated with this materials paradigm. In particular, the defects in 2D materials can be located at desired positions with atomic precision suggesting the potential to build extended quantum emitter networks. These promising properties offer a new path to the scalable integration of high-quality quantum emitters in quantum optical technologies. However, the research of 2D quantum emitters (2DQEs) is just at an early stage with many open questions about their fundamental properties, including their chemical and electronic structures and emission control. The answers to these open questions will deepen current knowledge in quantum optics and material science. Most importantly, they will guide the development of 2DQEs towards practical quantum application.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "2D-QUEST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "2D-QUEST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

VINCI (2020)

The Value of Information and Choice to Improve Control.

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More