Opendata, web and dolomites


Nanoelectromechanical Infrared Detector

Total Cost €


EC-Contrib. €






Project "NIRD" data sheet

The following table provides information about the project.


Organization address
address: KARLSPLATZ 13
city: WIEN
postcode: 1040

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET WIEN AT (WIEN) coordinator 140˙000.00
2    INVISIBLE-LIGHT LABS GMBH AT (WIEN) participant 10˙000.00


 Project objective

The aim of this proposal is to develop an uncooled nanoelectromechanical detector for infrared (IR) and terahertz (THz) radiation, which surpasses the sensitivity of state-of-the-art uncooled detectors by up to two orders of magnitude. The reliable and quantitative sensing of light is a fundamental task ubiquitous to modern technology. The IR to THz region of the electromagnetic spectrum hosts a wealth of intriguing interactions between radiation and matter, which are of particular interest for a wide range of applications including quality control in food and agriculture, drug development in pharma, medical imaging, security scanning, environmental monitoring, astronomy, and fundamental research. Because of the low energy of IR/THz photons, highly effective photodiodes don’t exist in this region and detectors typically rely on less sensitive thermal detectors. In order to reach sensitivities comparable to what is obtainable with photodiodes in the visible and near IR region, thermal IR detectors require cryogenic cooling. In our ongoing work on photothermal coupling of nanoplasmonic antennas and single molecules to nanomechanical resonators (ERC-StG PLASMECS), we have recently obtained an extraordinary sensitivity of 16 fW/rtHz at room temperature in the visible regime, which even exceeds the sensitivity of state-of-the-art LHe cooled bolometers. The ERC PoC grant would allow us to develop our current nanomechanical sensor further to an innovative uncooled IR/THz detector with unprecedented sensitivity. The resulting detector would constitute a breakthrough by improving the current sensitivity of state-of-the-art uncooled detectors to the fundamental photon noise limit. Such a detector would not only spur IR-THz-research, but more importantly, without the need of cryogenic cooling it would enable IR/THz technology to actually leave the laboratory and make a big impact in many fields of application.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NIRD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NIRD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  


The Mass Politics of Disintegration

Read More  


Economic Fluctuations, Productivity Growth and Stabilization Policies: A Keynesian Growth Perspective

Read More