Opendata, web and dolomites


Learning efficient millimeter wave radar imaging for autonomous vehicles

Total Cost €


EC-Contrib. €






 DEEP-RADAR project word cloud

Explore the words cloud of the DEEP-RADAR project. It provides you a very rough idea of what is the project "DEEP-RADAR" about.

demonstrating    frame    underlying    driving    485    40    autonomous    trillion    weakness    array    similarities    maintaining    exceeding    grow    receive    resolution    hitting    2050    signal    almost    quality    digital    input    imaging    antennas    2026    consensus    temporal    wave    cars    mimo    pulses    commercial    entire    demonstrated    rate    expensive    transmitted    significantly    shorter    restricted    ratio    methodology    millimeter    halve    transmits    reconstruction    technologies    despite    ecosystem    mathematical    protocols    configuration    spatial    proof    overcome    share    description    decade    automotive    multiple    costly    learned    reducing    insufficient    shape    prohibitively    image    medical    ultrasonography    containing    output    channels    attractive    imperative    accurate    requirement    noise    parts    compromising    reduce    reading    velocity    ultrasound    viability    industry    receivers    sensing    learning    adverse    transmitting    optical    conceptual    transmit    modalities    physics    radars    weather    alternative    vehicle    sufficient    cagr    patterns    relying    images    receiver    penetrate    moving    smaller    phased    billion    intend    self    radar    pipeline   

Project "DEEP-RADAR" data sheet

The following table provides information about the project.


Organization address
city: HAIFA
postcode: 32000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The emerging autonomous vehicle ecosystem is expected to grow with an almost 40% CAGR in the next decade hitting €485 billion by 2026 and exceeding €6 trillion in 2050. There is wide industry consensus that improved long-range depth sensing modalities are imperative for the viability of self-driving cars. State-of-the-art optical technologies are still prohibitively expensive, have insufficient temporal and spatial resolution, do not provide an accurate velocity reading, and are restricted to a shorter range in adverse weather conditions. Millimeter wave multiple-input multiple-output (MIMO) radars are an attractive alternative relying on a phased array of transmitting antennas and digital receivers, containing no moving parts, and able to penetrate adverse weather conditions. The weakness of this technology is the costly requirement for a large number of receiver channels to achieve sufficient spatial resolution. We will apply our novel methodology recently developed for medical imaging to overcome this challenge.

We have demonstrated that learning the entire imaging pipeline in medical ultrasonography, including the shape of the transmitted pulses and the configuration of the receivers allows reducing the number of transmits by a factor of 3, while maintaining image quality comparable to traditional high-frame rate imaging protocols. Despite the different underlying physics, ultrasound and radar imaging share many conceptual similarities and have a similar mathematical description. Here, we intend to develop a proof-of-concept MIMO radar system demonstrating that by using the learned transmit patterns and image reconstruction pipeline, it is possible to halve the number of receive channels without compromising the image resolution and signal-to-noise ratio. Maintaining high resolution images using a smaller number of receiver channels will significantly reduce the cost of this technology and increase the commercial viability of automotive MIMO radars.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEP-RADAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEP-RADAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Mass Politics of Disintegration

Read More  


Economic Fluctuations, Productivity Growth and Stabilization Policies: A Keynesian Growth Perspective

Read More  

Photopharm (2020)

Photopharmacology: From Academia toward the Clinic.

Read More