Opendata, web and dolomites


Learning efficient millimeter wave radar imaging for autonomous vehicles

Total Cost €


EC-Contrib. €






 DEEP-RADAR project word cloud

Explore the words cloud of the DEEP-RADAR project. It provides you a very rough idea of what is the project "DEEP-RADAR" about.

accurate    weather    decade    ultrasonography    receivers    weakness    cars    shape    despite    imperative    ecosystem    mathematical    grow    sensing    reduce    protocols    insufficient    transmitted    channels    penetrate    radar    cagr    reducing    consensus    autonomous    phased    reconstruction    transmit    antennas    restricted    transmitting    proof    moving    millimeter    automotive    containing    modalities    learned    transmits    costly    imaging    technologies    485    configuration    images    methodology    smaller    prohibitively    signal    hitting    halve    commercial    self    temporal    adverse    share    resolution    input    almost    parts    reading    patterns    2050    physics    receiver    rate    requirement    demonstrated    similarities    multiple    relying    image    billion    output    noise    ultrasound    spatial    trillion    quality    compromising    digital    conceptual    ratio    intend    frame    driving    overcome    vehicle    pipeline    attractive    alternative    shorter    2026    industry    viability    radars    wave    optical    demonstrating    exceeding    entire    40    medical    array    learning    significantly    underlying    receive    maintaining    mimo    pulses    description    velocity    expensive    sufficient   

Project "DEEP-RADAR" data sheet

The following table provides information about the project.


Organization address
city: HAIFA
postcode: 32000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The emerging autonomous vehicle ecosystem is expected to grow with an almost 40% CAGR in the next decade hitting €485 billion by 2026 and exceeding €6 trillion in 2050. There is wide industry consensus that improved long-range depth sensing modalities are imperative for the viability of self-driving cars. State-of-the-art optical technologies are still prohibitively expensive, have insufficient temporal and spatial resolution, do not provide an accurate velocity reading, and are restricted to a shorter range in adverse weather conditions. Millimeter wave multiple-input multiple-output (MIMO) radars are an attractive alternative relying on a phased array of transmitting antennas and digital receivers, containing no moving parts, and able to penetrate adverse weather conditions. The weakness of this technology is the costly requirement for a large number of receiver channels to achieve sufficient spatial resolution. We will apply our novel methodology recently developed for medical imaging to overcome this challenge.

We have demonstrated that learning the entire imaging pipeline in medical ultrasonography, including the shape of the transmitted pulses and the configuration of the receivers allows reducing the number of transmits by a factor of 3, while maintaining image quality comparable to traditional high-frame rate imaging protocols. Despite the different underlying physics, ultrasound and radar imaging share many conceptual similarities and have a similar mathematical description. Here, we intend to develop a proof-of-concept MIMO radar system demonstrating that by using the learned transmit patterns and image reconstruction pipeline, it is possible to halve the number of receive channels without compromising the image resolution and signal-to-noise ratio. Maintaining high resolution images using a smaller number of receiver channels will significantly reduce the cost of this technology and increase the commercial viability of automotive MIMO radars.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEP-RADAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEP-RADAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

cRGS (2019)

Cognitive Rehabilitation Gamming System (cRGS): a novel Virtual Reality-based system for the conjunctive training of stroke-derived cognitive impairments

Read More  

SPRS (2019)

Stochastic Processes on Random Surfaces

Read More  


Coupled Organic Inorganic Nanostructures for Fast, Light-Induced Data Processing

Read More