Opendata, web and dolomites

DEEP-RADAR SIGNED

Learning efficient millimeter wave radar imaging for autonomous vehicles

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DEEP-RADAR project word cloud

Explore the words cloud of the DEEP-RADAR project. It provides you a very rough idea of what is the project "DEEP-RADAR" about.

radars    description    prohibitively    millimeter    significantly    temporal    spatial    accurate    pulses    methodology    learning    mimo    conceptual    mathematical    quality    sufficient    costly    insufficient    viability    imaging    consensus    optical    billion    moving    protocols    imperative    array    radar    self    multiple    technologies    restricted    trillion    ratio    vehicle    halve    reading    velocity    reconstruction    share    exceeding    patterns    parts    almost    signal    phased    grow    transmitted    similarities    receiver    reducing    autonomous    channels    intend    entire    decade    industry    sensing    images    demonstrated    transmitting    medical    2026    input    reduce    learned    driving    cagr    relying    receive    wave    output    expensive    commercial    penetrate    proof    demonstrating    transmits    receivers    frame    requirement    configuration    adverse    cars    digital    ultrasonography    antennas    automotive    40    hitting    maintaining    ecosystem    attractive    resolution    485    modalities    compromising    smaller    shorter    weakness    transmit    containing    despite    noise    physics    alternative    rate    weather    ultrasound    image    pipeline    2050    underlying    shape    overcome   

Project "DEEP-RADAR" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 150˙000.00

Map

 Project objective

The emerging autonomous vehicle ecosystem is expected to grow with an almost 40% CAGR in the next decade hitting €485 billion by 2026 and exceeding €6 trillion in 2050. There is wide industry consensus that improved long-range depth sensing modalities are imperative for the viability of self-driving cars. State-of-the-art optical technologies are still prohibitively expensive, have insufficient temporal and spatial resolution, do not provide an accurate velocity reading, and are restricted to a shorter range in adverse weather conditions. Millimeter wave multiple-input multiple-output (MIMO) radars are an attractive alternative relying on a phased array of transmitting antennas and digital receivers, containing no moving parts, and able to penetrate adverse weather conditions. The weakness of this technology is the costly requirement for a large number of receiver channels to achieve sufficient spatial resolution. We will apply our novel methodology recently developed for medical imaging to overcome this challenge.

We have demonstrated that learning the entire imaging pipeline in medical ultrasonography, including the shape of the transmitted pulses and the configuration of the receivers allows reducing the number of transmits by a factor of 3, while maintaining image quality comparable to traditional high-frame rate imaging protocols. Despite the different underlying physics, ultrasound and radar imaging share many conceptual similarities and have a similar mathematical description. Here, we intend to develop a proof-of-concept MIMO radar system demonstrating that by using the learned transmit patterns and image reconstruction pipeline, it is possible to halve the number of receive channels without compromising the image resolution and signal-to-noise ratio. Maintaining high resolution images using a smaller number of receiver channels will significantly reduce the cost of this technology and increase the commercial viability of automotive MIMO radars.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEP-RADAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEP-RADAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

QLite (2019)

Quantum Light Enterprise

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More