Opendata, web and dolomites

DEEP-RADAR SIGNED

Learning efficient millimeter wave radar imaging for autonomous vehicles

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DEEP-RADAR project word cloud

Explore the words cloud of the DEEP-RADAR project. It provides you a very rough idea of what is the project "DEEP-RADAR" about.

receivers    ultrasound    cars    significantly    attractive    parts    relying    images    moving    40    automotive    hitting    ratio    transmit    insufficient    receiver    input    sufficient    physics    cagr    phased    accurate    digital    receive    learning    proof    temporal    demonstrated    reconstruction    optical    image    restricted    autonomous    learned    imaging    exceeding    reducing    halve    protocols    transmitting    frame    quality    similarities    almost    radar    array    containing    shape    requirement    rate    imperative    self    driving    adverse    patterns    expensive    alternative    millimeter    methodology    consensus    antennas    intend    radars    viability    reduce    resolution    technologies    485    configuration    demonstrating    medical    vehicle    signal    channels    multiple    commercial    ultrasonography    penetrate    noise    mimo    shorter    pipeline    grow    decade    output    billion    smaller    entire    description    velocity    spatial    mathematical    prohibitively    modalities    ecosystem    despite    trillion    transmitted    conceptual    wave    2026    sensing    2050    transmits    maintaining    reading    weakness    industry    compromising    costly    pulses    share    overcome    underlying    weather   

Project "DEEP-RADAR" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 150˙000.00

Map

 Project objective

The emerging autonomous vehicle ecosystem is expected to grow with an almost 40% CAGR in the next decade hitting €485 billion by 2026 and exceeding €6 trillion in 2050. There is wide industry consensus that improved long-range depth sensing modalities are imperative for the viability of self-driving cars. State-of-the-art optical technologies are still prohibitively expensive, have insufficient temporal and spatial resolution, do not provide an accurate velocity reading, and are restricted to a shorter range in adverse weather conditions. Millimeter wave multiple-input multiple-output (MIMO) radars are an attractive alternative relying on a phased array of transmitting antennas and digital receivers, containing no moving parts, and able to penetrate adverse weather conditions. The weakness of this technology is the costly requirement for a large number of receiver channels to achieve sufficient spatial resolution. We will apply our novel methodology recently developed for medical imaging to overcome this challenge.

We have demonstrated that learning the entire imaging pipeline in medical ultrasonography, including the shape of the transmitted pulses and the configuration of the receivers allows reducing the number of transmits by a factor of 3, while maintaining image quality comparable to traditional high-frame rate imaging protocols. Despite the different underlying physics, ultrasound and radar imaging share many conceptual similarities and have a similar mathematical description. Here, we intend to develop a proof-of-concept MIMO radar system demonstrating that by using the learned transmit patterns and image reconstruction pipeline, it is possible to halve the number of receive channels without compromising the image resolution and signal-to-noise ratio. Maintaining high resolution images using a smaller number of receiver channels will significantly reduce the cost of this technology and increase the commercial viability of automotive MIMO radars.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEP-RADAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEP-RADAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Regen-membrane (2019)

Pulsed Electrophoretic Deposition to give Membranes for Regenerative Medicine

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

REAL (2019)

Rights and Egalitarianism

Read More