Opendata, web and dolomites


Toxin-antidote selfish elements in animals: from gene drive to speciation

Total Cost €


EC-Contrib. €






 TOX-ANT project word cloud

Explore the words cloud of the TOX-ANT project. It provides you a very rough idea of what is the project "TOX-ANT" about.

laws    populations    vectors    suggests    team    genetically    fish    genetics    multidisciplinary    spread    close    synthetic    dissecting    view    first    diseases    animal    mechanism    relative    molecular    natural    animals    time    medaka    raises    lack    challenged    drive    rare    ta    dissected    contribution    idea    antagonize    genomics    acting    spreading    pha    35    malaria    adults    mosquito    vertebrates    speciation    biology    examples    previously    mechanisms    stimulate    devo    bulk    dissect    sup    effect    mimicking    nematode    efficient    qtl    prevalence    action    evolutionary    global    medicine    perpetuated    antidote    class    surprisingly    gene    biochemistry    largely    balancing    critical    evo    predict    nematodes    tropicalis    screen    fitness    mendelian    toxin    paternal    virus    unknown    mapping    discovered    species    questions    origin    discover    burdens    diverse    expertise    zika    segregation    elegans    selfish    anticipated    extremely    health    leveraging    underlying    subverting    decade   

Project "TOX-ANT" data sheet

The following table provides information about the project.


Organization address
address: DR BOHRGASSE 3
city: WIEN
postcode: 1030

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 1˙498˙428 €
 EC max contribution 1˙498˙428 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2025-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Toxin-antidote (TA) elements are a class of selfish elements that spread in natural populations by subverting the laws of Mendelian segregation (gene drive activity). For a decade, the only known TA element in animals was a paternal-acting element discovered in the nematode C. elegans. The lack of other examples perpetuated the idea that TA elements were extremely rare in animals. However, I recently challenged this view with two key findings 1) I genetically dissected a second TA element in C. elegans, the element sup-35/pha-1, and 2) I identified five novel TA elements in C. tropicalis, a close relative of C. elegans. Surprisingly, some of these novel TA elements can affect the fitness of adults and can antagonize each other mimicking the effect of balancing selection. Overall, my research strongly suggests that TA elements are much more common in animals than previously anticipated and raises critical questions about their origin, prevalence, mechanism of action, and contribution to speciation, all of which are largely unknown. This proposal has three main objectives: 1. To dissect the molecular mechanisms underlying an animal TA element for the first time. 2. To identify and characterize novel TA elements in diverse nematode species. 3. To screen for TA elements in medaka fish. My team and I will achieve these objectives by leveraging my multidisciplinary expertise in genomics, evo-devo, and biochemistry, as well as a state-of-the-art bulk QTL mapping method that I recently developed. Dissecting the molecular mechanisms used by natural selfish elements will help us design more efficient and specific synthetic drive elements that could target mosquito vectors spreading diseases such as malaria and Zika virus - global health burdens. I predict that we will discover and characterize many novel TA selfish elements in diverse species from nematodes to vertebrates. Our findings will stimulate new research areas in genetics, evolutionary biology, and medicine.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOX-ANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOX-ANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


Biomineralizing coatings for maxillofacial implants

Read More  

TeloRNAging (2019)

The role of damage-induced non coding RNA in the control of DNA damage response activation at telomeres in aging

Read More  


Strain-stiffening polymer structures for orthotics

Read More