Opendata, web and dolomites


'Living' Colloidal Liquid Crystals

Total Cost €


EC-Contrib. €






Project "[LC]2" data sheet

The following table provides information about the project.


Organization address
address: ASHBY ROAD
postcode: LE11 3TU

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙402˙345 €
 EC max contribution 1˙402˙345 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2024-11-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

We propose an unprecedented class of soft, self-assembled and self-motile micro-machines. The combined qualities of active fluids and colloidal liquid crystals can be leveraged to design intrinsically out-of- equilibrium hierarchal structures, or ‘Living’ Colloidal Liquid Crystals [LC]2. The study of colloidal interactions and self-assembly in active nematics has yet to be considered and constitutes an unexplored and inter-disciplinary application of the emerging sciences of active matter and colloidal liquid crystals. Activity will endow dynamical multi-scale colloidal structures with autonomous functionality, including self-motility, self-revolution and dynamical self-transformations, which are exactly the characteristics one would desire for a first generation of autonomous components of micro-biomechanical systems and soft micro-machines. As hybrids between biological active fluids and man-made materials, [LC]2 structures represent an early foray into ‘living’ metamaterials, in which active self-assembly of simple components produces a rich diversity of behaviours and the potential for autonomously tunable material properties, mimicking biological complexity. In particular, we hypothesize self-assembled [LC]2 dimer turbines, colloidal flagella and ant-like group retrieval. These systems represent a fundamentally innovative concept that we propose to drive nanotechnology into a new future of soft materials that biomimetically self-assemble and autonomously enact functions. It is our multiscale coarse-grained simulations and expertise in flowing active nematic fluids that generates the opportunity for this unique line of research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "[LC]2" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "[LC]2" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

VITAE (2018)

VIrTual BrAin PErfusion: Assessing cerebrovascular function by High Performance Computing from 3D brain vessel network data for vascular-targeted drug development in neurodegenerative diseases.

Read More  


Dynamic Modeling of Labor Market Mobility and Human Capital Accumulation

Read More  

MEMO (2020)

The Memory of Solitons

Read More