Opendata, web and dolomites


Making Sense of Electrical Noise by Simulating Electrolyte Solutions

Total Cost €


EC-Contrib. €






 SENSES project word cloud

Explore the words cloud of the SENSES project. It provides you a very rough idea of what is the project "SENSES" about.

framework    question    gradient    decipher    uncovered    ionic    perspective    molecular    phenomena    experimentalists    sources    mentioned    electrolytes    relaxometry    individual    predict    interpret    questions    coupled    transport    electrode    experiments    collective    dynamics    bulk    surface    itself    ion    tubes    origin    nanopores    corresponding    confined    complementary    fresh    seemingly    interactions    electrolyte    microscopic    electrochemistry    liquids    hydrodynamic    mass    electrical    fluids    ad    densities    nanotubes    nmr    balance    diffusion    desorption    unrelated    simulations    force    tell    solvation    play    ions    quantitatively    multiscale    coloured    interlinked    measured    unexpected    electric    single    forces    underlying    interfacial    surfaces    nuclei    polarization    simultaneously    quadrupolar    charge    unified    nano    tools    flows    theoretical    global    noise    electrostatic    had    probe    encoded    biology    mesoscopic    concentrated    fluctuations    windows   

Project "SENSES" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙781˙893 €
 EC max contribution 1˙781˙893 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-10-01   to  2025-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale electrochemistry, NMR relaxometry and Surface Force Balance measurements, all probe electrical fluctuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar nuclei) and the coupled mass/charge densities. If only we had the theoretical tools to interpret this “electrical noise”, we would open complementary windows on ionic systems. Such insight is needed, as recent experiments uncovered unexpected behaviour of ionic systems (electrolytes, ionic liquids), which question our understanding of these “simple” fluids and call for a fresh theoretical perspective. This project aims at providing an integrated understanding of fluctuations in bulk, interfacial and confined ionic systems. For modelling, the key challenge is to quantitatively predict the phenomena underlying the various sources of noise: coupled diffusion, long-range electrostatic interactions & hydrodynamic flows, short-range ion-specific effects (solvation, ad/desorption). Using molecular and mesoscopic simulations, I will provide a unified theoretical framework enabling experimentalists to decipher the microscopic properties encoded in the measured electrical noise. I will achieve this by addressing four interlinked questions corresponding to the above-mentioned experiments: 1) What is the microscopic origin of the “coloured” noise of electric current through single nanopores/tubes? 2) What do the charge fluctuations of an electrode tell us about the properties of the interfacial electrolyte? 3) What information can NMR relaxometry provide on the multiscale dynamics of individual ions? 4) Could collective fluctuations in concentrated electrolytes explain long-range forces between surfaces? Each question is in itself an exciting challenge, but addressing them simultaneously is the key to a global understanding of these liquids which play a crucial role in biology and technology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SENSES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SENSES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


Sociolinguistic typology and responsive features in syntactic history

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

HSS (2020)

Homomorphic Secret Sharing: Secure Computation and Beyond

Read More  
lastchecktime (2021-01-20 13:34:48) correctly updated