Opendata, web and dolomites

MYCOREV SIGNED

A Mycorrhizal Revolution: The role of diverse symbiotic fungi in modern terrestrial ecosystems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MYCOREV project word cloud

Explore the words cloud of the MYCOREV project. It provides you a very rough idea of what is the project "MYCOREV" about.

fossil    fundamental    point    21st    revealed    concentrations    thought    land    gaps    supporting    hypothesis    mucoromycotina    mya    nutritionally    gt    shown    evolution    co2    symbiotic    phylogeny    divergent    altering    options    environment    previously    diversity    endophytes    terrestrial    arbuscular    fungi    discoveries    groups    entire    biosphere    significance    amf    true    coupled    fungal    nutrient    basis    functional    instead    demands    limited    nutrients    driving    paving    500    group    forming    mfre    symbioses    history    molecular    life    span    knew    form    environmental    function    earliest    structure    question    plants    symbionts    fine    drastically    root    discovered    turning    landmasses    mutualistic    declining    extant    changing    mycorrhizal    background    supply    playing    earth    facilitated    complexity    unknown    surrounding    century    atmospheric    invasion    biology    revolution    preventing    colonisation    force    physiology    plant    had   

Project "MYCOREV" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙059˙147 €
 EC max contribution 2˙059˙147 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2025-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 1˙469˙918.00
2    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) participant 306˙107.00
3    NATURAL HISTORY MUSEUM UK (LONDON) participant 283˙121.00

Map

 Project objective

The colonisation of the landmasses by plants >500 Mya was a major turning point in Earth’s history, drastically altering the development of the biosphere and providing the basis for all terrestrial life ever since. The hypothesis that early plants were facilitated in their invasion of the land environment by forming symbioses with arbuscular mycorrhizal fungi (AMF) is widely supported by fossil and molecular evidence. My previous findings in physiology identified the role of AMF as a driving force in evolution by supporting growing nutrient demands of increasingly large plants, against a background of declining atmospheric CO2. Recently, it was revealed that the earliest groups of extant plants form symbioses with a different group of fungi - Mucoromycotina “fine root endophytes” (MFRE) and I have since shown that MFRE symbioses are nutritionally mutualistic. These findings support a new hypothesis: the earliest land plants had a wider range of symbiotic options than was previously thought with MFRE also playing an important role in their supply of nutrients. I have now discovered that MFRE symbioses are not limited to early divergent plants, but instead span the entire land plant phylogeny. Coupled with my most recent findings that MFRE symbionts are distinct from AMF in terms of function and responses to changing atmospheric CO2 concentrations, these discoveries call into question much of what we thought we knew about plant-fungal symbioses. Much of the fundamental biology of MFRE remains unknown, preventing us from understanding the true complexity of plant-fungal symbioses, how they might respond to environmental change and their potential exploitation. This project will address the fundamental knowledge gaps surrounding the diversity, structure and functional significance of plant-MFRE symbioses, paving the way for a revolution in mycorrhizal research in the 21st century.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MYCOREV" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MYCOREV" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More  

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More