Opendata, web and dolomites

MYCOREV SIGNED

A Mycorrhizal Revolution: The role of diverse symbiotic fungi in modern terrestrial ecosystems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MYCOREV project word cloud

Explore the words cloud of the MYCOREV project. It provides you a very rough idea of what is the project "MYCOREV" about.

thought    mfre    concentrations    unknown    landmasses    instead    divergent    mycorrhizal    hypothesis    symbionts    biosphere    structure    paving    atmospheric    limited    life    entire    question    demands    nutritionally    environmental    fine    changing    forming    groups    fundamental    co2    true    form    21st    supporting    colonisation    amf    phylogeny    revolution    endophytes    molecular    500    symbiotic    drastically    span    earliest    root    options    discovered    invasion    facilitated    history    fungal    background    playing    had    plant    evolution    mya    force    gaps    nutrients    symbioses    functional    fossil    function    group    preventing    land    physiology    shown    turning    basis    declining    revealed    biology    surrounding    coupled    complexity    mutualistic    gt    discoveries    knew    previously    century    supply    plants    significance    driving    terrestrial    environment    earth    altering    arbuscular    mucoromycotina    point    diversity    fungi    extant    nutrient   

Project "MYCOREV" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙059˙147 €
 EC max contribution 2˙059˙147 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2025-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 1˙469˙918.00
2    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) participant 306˙107.00
3    NATURAL HISTORY MUSEUM UK (LONDON) participant 283˙121.00

Map

 Project objective

The colonisation of the landmasses by plants >500 Mya was a major turning point in Earth’s history, drastically altering the development of the biosphere and providing the basis for all terrestrial life ever since. The hypothesis that early plants were facilitated in their invasion of the land environment by forming symbioses with arbuscular mycorrhizal fungi (AMF) is widely supported by fossil and molecular evidence. My previous findings in physiology identified the role of AMF as a driving force in evolution by supporting growing nutrient demands of increasingly large plants, against a background of declining atmospheric CO2. Recently, it was revealed that the earliest groups of extant plants form symbioses with a different group of fungi - Mucoromycotina “fine root endophytes” (MFRE) and I have since shown that MFRE symbioses are nutritionally mutualistic. These findings support a new hypothesis: the earliest land plants had a wider range of symbiotic options than was previously thought with MFRE also playing an important role in their supply of nutrients. I have now discovered that MFRE symbioses are not limited to early divergent plants, but instead span the entire land plant phylogeny. Coupled with my most recent findings that MFRE symbionts are distinct from AMF in terms of function and responses to changing atmospheric CO2 concentrations, these discoveries call into question much of what we thought we knew about plant-fungal symbioses. Much of the fundamental biology of MFRE remains unknown, preventing us from understanding the true complexity of plant-fungal symbioses, how they might respond to environmental change and their potential exploitation. This project will address the fundamental knowledge gaps surrounding the diversity, structure and functional significance of plant-MFRE symbioses, paving the way for a revolution in mycorrhizal research in the 21st century.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MYCOREV" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MYCOREV" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More