Opendata, web and dolomites

E-SAC SIGNED

Evolving Single-Atom Catalysis: Fundamental Insights for Rational Design

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 E-SAC project word cloud

Explore the words cloud of the E-SAC project. It provides you a very rough idea of what is the project "E-SAC" about.

environmentally    recreate    oxygen    reactions    spectra    catalytic    atoms    rare    homogeneous    hydroformylation    sites    rational    bridge    unravel    selectively    anchor    era    selectivity    gap    organometallic    catalysis    orr    chemical    pressure    metals    designed    progress    heterogenize    hydrogenation    proves    catalysts    understand    difficult    performance    reaction    xanes    efficient    complexity    iras    strive    bonds    realistic    single    energy    technologies    heterogeneous    001    cells    origins    unknown    metal    optimal    describe    sac    levels    mechanisms    uhv    solution    efficiency    conversion    model    methane    group    vacuum    resemble    function    sacs    site    economy    combinations    mean    impossible    robustly    formed    ultrahigh    atom    minimising    vienna    environments    modify    complexes    utilized    precisely    fe3o4    newly    purpose    prox    elucidated    active    supports    performed    electrochemical    structure    relationships    ultimate    pioneered    replacing    expensive    tend    identical    fundamental   

Project "E-SAC" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET WIEN 

Organization address
address: KARLSPLATZ 13
city: WIEN
postcode: 1040
website: www.tuwien.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 1˙993˙718 €
 EC max contribution 1˙993˙718 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET WIEN AT (WIEN) coordinator 1˙993˙718.00

Map

 Project objective

Rare and expensive metals tend to be the best catalysts, and minimising or replacing them is a major research target as we strive to develop an economy based on more environmentally-friendly, energy-efficient technologies. “Single-atom” catalysis (SAC) represents the ultimate in efficiency, and the chemical bonds formed between the metal atom and the support mean these systems strongly resemble the organometallic complexes utilized in homogeneous catalysis. If all active sites were identical, single-atom catalysts (SACs) could achieve similar levels of selectivity, and even be used to “heterogenize” difficult reactions that must be currently performed in solution. There is a problem however: homogeneous catalysts are designed based on well-understood structure-function relationships. In SAC, the structure of the active site is unknown, thus rational design is impossible. My group in Vienna has pioneered the use of the model supports to understand fundamental mechanisms in SAC. Our work with Fe3O4(001) proves that we can precisely determine and even selectively modify the active site, and unravel the role of structure in catalytic activity. Real progress, however, requires realistic active sites, realistic supports, and realistic environments. In this project, I describe how we will determine the sites that robustly anchor metal atoms on five of the most important supports in ultrahigh vacuum (UHV), and test their performance in newly-developed high-pressure and electrochemical cells. The origins of selectivity for PROX, hydrogenation, hydroformylation, methane conversion, and the oxygen reduction reaction (ORR) will be elucidated, and the best atom/support combinations for each reaction identified. Robust XANES and IRAS spectra will allow us to bridge the complexity gap and recreate the optimal active sites on real SACs and lead the way into a new era in which heterogeneous catalysts are designed for purpose, based on a fundamental understanding of how they work.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "E-SAC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "E-SAC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

DOUBLE-TROUBLE (2020)

Replaying the ‘genome duplication’ tape of life: the importance of polyploidy for adaptation in a changing environment

Read More  

inhibiTOR (2020)

Novel selective mTORC1 inhibitors

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More