Opendata, web and dolomites

DyNeRfusion SIGNED

Dynamic Network Reconstruction of Human Perceptual and Reward Learning via Multimodal Data Fusion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DyNeRfusion project word cloud

Explore the words cloud of the DyNeRfusion project. It provides you a very rough idea of what is the project "DyNeRfusion" about.

multivariate    domain    betting    trial    basis    literature    efforts    electrophysiological    inspired    image    largely    considerable    networks    guided    mechanisms    training    uncover    machine    extends    additional    facilitates    behavior    actions    market    reward    understand    ray    simultaneously    techniques    ultimate    framework    power    neurobiological    unified    share    whereby    endogenous    predictors    fmri    lines    proposition    error    divergent    characterization    stock    fuse    behaviorally    mechanism    inferred    variability    learning    isolation    computational    previously    eeg    stimulus    data    mechanistic    decisions    noisy    improvements    maximization    prediction    single    diagnose    integrating    principles    neuronal    empower    adaptive    reported    lasting    probabilistic    parametric    perceptual    acquired    either    multimodal    neuroimaging    spatiotemporal    primary    explanatory    despite    separate    neural    ambiguous    sensory    representations    modalities    respectively   

Project "DyNeRfusion" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF GLASGOW 

Organization address
address: UNIVERSITY AVENUE
city: GLASGOW
postcode: G12 8QQ
website: www.gla.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙996˙043 €
 EC max contribution 1˙996˙043 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 1˙996˙043.00

Map

 Project objective

Training and experience can lead to long-lasting improvements in our ability to make decisions based on either ambiguous sensory or probabilistic information (e.g. learning to diagnose a noisy x-ray image or betting on the stock market). These two processes are referred to as perceptual and probabilistic/reward learning, respectively. Despite considerable efforts to uncover the neural systems involved in these processes, perceptual and reward learning have largely been studied in separate lines of research using divergent learning mechanisms. The primary aim of this proposal is to develop a unified framework for integrating these lines of research and understand the extent to which they share a common computational and neurobiological basis. Specifically, we will test the proposition that both the perceptual and reward systems could be understood in a common framework of “reward maximization”, whereby a domain-general reinforcement-guided learning mechanism – based on separate prediction error representations – facilitates future actions and adaptive behavior. To offer a comprehensive spatiotemporal characterization of the relevant networks and their computational principles we will adopt a state-of-the-art multimodal neuroimaging approach to fuse simultaneously-acquired EEG and fMRI data, via machine-learning-inspired multivariate single-trial analysis techniques and computational modelling. The project’s ultimate goal is to empower a level of neuronal and mechanistic understanding that extends beyond what could be inferred with each of these modalities in isolation. We will achieve this goal by exploiting endogenous trial-by-trial electrophysiological variability to build parametric fMRI predictors that can offer additional explanatory power than what can already be achieved by stimulus- or behaviorally-derived predictors, allowing us to go over and beyond what has been reported previously in the literature.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DYNERFUSION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DYNERFUSION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More