Opendata, web and dolomites

PSust-MOF SIGNED

Metal-Organic Frameworks as multifunctional materials toward P-sustainability

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PSust-MOF" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD DE GRANADA 

Organization address
address: CUESTA DEL HOSPICIO SN
city: GRANADA
postcode: 18071
website: www.ugr.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 160˙932 €
 EC max contribution 160˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD DE GRANADA ES (GRANADA) coordinator 160˙932.00

Map

 Project objective

The efficient use of chemical fertilizers is essential to face the Sustainable Development Goal-2: Zero Hunger. Specifically, phosphorous-fertilizers are mainly produced by mining the non-renewable phosphate rock (PR), with both inefficient production and application processes causing dramatic environmental damages. A new European fertilizer regulation encourages the development of new strategies driving to a P-circular economy. Phosphate could be recovered from both waste/eutrophicated water to produce P-fertilizers. However, the prevailing recovery rates cannot satisfy the whole P-demand. Thus, novel methods for a more sustainable production of P-fertilizers are also urgently needed. Zirconium-based Metal-Organic Frameworks (Zr-MOFs) are porous crystalline materials easy to functionalize showing large surface areas, water stability and a strong affinity to phosphate. Hence, they could act as promising P-recovery adsorbents. Besides, they have recently proved to promote the dissolution of highly stable minerals. Thus, they could enhance the dissolution of PR under milder condition, mitigating the environmental risks of PR-mining. Unfortunately, Zr-MOFs are usually prepared using toxic organic solvents, limiting their industrial progress. The project entitled “Metal-Organic Frameworks as multifunctional materials toward P-sustainability” (PSust-MOF) addresses the greener production Zr-MOFs with controlled particle features by using water as solvent. The main features determining both P-recovery process and promotion of apatite dissolution (main component of PR), will be identified. This knowledge will enable the design of advanced Zr-MOF materials which will be tested, for P-recovery or PR-dissolution, under real conditions. It is expected that the results of the project will not only have a strong impact on P-sustainability. Given the wide-range of applications of MOFs, the greener design of Zr-MOFs will also favour their industrial progress in multiple fields.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PSUST-MOF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PSUST-MOF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MITafterVIT (2020)

Unravelling maintenance mechanisms of immune tolerance after termination of venom immunotherapy by means of clonal mast cell diseases

Read More  

EGeoCC (2019)

Ethnic geography and civil conflict

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More