Opendata, web and dolomites

CuZnSyn SIGNED

Understanding Copper–Zinc Synergy for Carbon Dioxide Hydrogenation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CuZnSyn project word cloud

Explore the words cloud of the CuZnSyn project. It provides you a very rough idea of what is the project "CuZnSyn" about.

significantly    series    dense    sustainable    binding    special    skills    synergy    mechanistic    harnessed    reaction    heterogeneous    complexes    vectors    once    combination    fundamental    zinc    societal    ligand    fuel    energy    green    promoter    building    catalysts    generation    co2    fuels    catalyst    made    debated    12    direct    greenhouse    intermediates    climate    industrial    framework    gaining    gain    characterisation    conversion    deep    interfaces    centres    waste    adding    ligands    isolation    dioxide    active    subsequent    profiles    sequestering    block    critical    uses    carbon    beneficial    proximal    multimetallic    poorly    isolate    incorporates    oxide    tandem    cuzn    site    attractive    species    isolated    invaluable    deleterious    host    copper    electronic    analysed    synthesis    hydrogenation    gas    conjunction    methanol    alumina    groups    streams    nanoparticles    stereo    activation    interconversion    connection    meticulously    realistic    construction    tuneable   

Project "CuZnSyn" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2022-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 224˙933.00

Map

 Project objective

Carbon dioxide (CO2) is a greenhouse gas that is significantly contributing to climate change. In tandem with advances in sequestering carbon, beneficial uses for CO2 are of high societal importance for developing a sustainable future. One attractive use of CO2 is in its conversion to energy dense fuels (green energy vectors). One such fuel is methanol, made from CO2 via hydrogenation in conjunction with a multimetallic catalyst. The current best industrial (heterogeneous) catalyst incorporates copper and zinc-oxide nanoparticles with an alumina support. A special synergy is observed between the copper (active site) and zinc (reaction promoter), but these species and their connection is poorly defined and remains debated.

This project aims to isolate proximal copper and zinc centres, the fundamental building block for the construction of critical copper–zinc interfaces, within a well-defined, and highly tuneable ligand framework. Once isolated, the binding, activation and interconversion of key intermediates along the CO2 hydrogenation pathway will be meticulously analysed.

Work package 1 involves the synthesis and characterisation of a series of 12 ligands that encompass a range of stereo-electronic profiles, and subsequent isolation of CuZn complexes using these ligands. Work package 2 will use the complexes to study the activation and interconversion of key intermediates along the CO2 hydrogenation pathway to gain mechanistic understanding. Finally, work package 3 will test the most active complexes as catalysts for the direct hydrogenation of CO2 to methanol.

The combination of my skills (multimetallic systems) and the host groups (mechanistic studies) make achieving the project aims realistic. The knowledge harnessed from gaining deep mechanistic understanding of the synergy between copper and zinc during CO2 hydrogenation will be invaluable in developing the next generation of catalysts for methanol production, adding value to a deleterious waste streams.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CUZNSYN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CUZNSYN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More