Opendata, web and dolomites

ACE-OF-SPACE SIGNED

Analysis, control, and engineering of spatiotemporal pattern formation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ACE-OF-SPACE project word cloud

Explore the words cloud of the ACE-OF-SPACE project. It provides you a very rough idea of what is the project "ACE-OF-SPACE" about.

biology    demonstrated    population    embryogenesis    initially    members    form    patterned    understand    absence    organ    asymmetries    plan    zebrafish    minimal    gain    time    signaling    break    tgf    interact    biophysical    adult    sources    pattern    tissue    modeling    talk    symmetry    patterning    questions    superfamily    mathematical    beta    engineering    risk    unclear    underlying    tissues    engineer    cells    body    synthetic    secondary    mechanisms    mouse    stability    mysterious    opposing    reaction    experimentally    first    small    cell    arise    identical    signals    bmp    independent    strategies    combination    homogeneous    theoretical    colonies    suggest    axis    molecules    diffusion    quantitative    stem    indicates    mediated    mechanism    thought    nodal    previously    sufficient    self    embryonic    differentiate    insights    central    allocation    prior    systems    axes    maternal    unknown    begun    temporally    analyze    regulated    embryos    precursors    extra    space    asymmetric    organizing    developmental    organize    patterns    signal    bacterial    cross    imaging    optogenetics    orchestrate    vertebrate    mammalian    opens   

Project "ACE-OF-SPACE" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙997˙750 €
 EC max contribution 1˙997˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-07-01   to  2025-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 1˙997˙750.00

Map

 Project objective

A central problem in developmental biology is to understand how tissues are patterned in time and space - how do identical cells differentiate to form the adult body plan? Patterns often arise from prior asymmetries in developing embryos, but there is also increasing evidence for self-organizing mechanisms that can break the symmetry of an initially homogeneous cell population. These patterning processes are mediated by a small number of signaling molecules, including the TGF-β superfamily members BMP and Nodal. While we have begun to analyze how biophysical properties such as signal diffusion and stability contribute to axis formation and tissue allocation during vertebrate embryogenesis, three key questions remain. First, how does signaling cross-talk control robust patterning in developing tissues? Opposing sources of Nodal and BMP are sufficient to produce secondary zebrafish axes, but it is unclear how the signals interact to orchestrate this mysterious process. Second, how do signaling systems self-organize to pattern tissues in the absence of prior asymmetries? Recent evidence indicates that axis formation in mammalian embryos is independent of maternal and extra-embryonic tissues, but the mechanism underlying this self-organized patterning is unknown. Third, what are the minimal requirements to engineer synthetic self-organizing systems? Our theoretical analyses suggest that self-organizing reaction-diffusion systems are more common and robust than previously thought, but this has so far not been experimentally demonstrated. We will address these questions in zebrafish embryos, mouse embryonic stem cells, and bacterial colonies using a combination of quantitative imaging, optogenetics, mathematical modeling, and synthetic biology. In addition to providing insights into signaling and development, this high-risk/high-gain approach opens exciting new strategies for tissue engineering by providing asymmetric or temporally regulated signaling in organ precursors.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ACE-OF-SPACE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ACE-OF-SPACE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More