Opendata, web and dolomites

Genesis SIGNED

Geo-inspired pathways towards nanoparticle-based metastable solids

Total Cost €


EC-Contrib. €






 Genesis project word cloud

Explore the words cloud of the Genesis project. It provides you a very rough idea of what is the project "Genesis" about.

bonds    encountered    lavas    geological    synthetic    pressure    extended    surprising    natural    rational    framework    nanoparticles    prone    thermodynamic    frame    syntheses    situ    molten    sometimes    deg    structures    exploratory    oxides    transition    progresses    pivotal    merge    original    silicon    inspiration    methodology    possess    metastable    idea    salts    collection    solids    phosphorus    conventional    kinetically    discovery    boron    motivates    surface    solid    trigger    covalent    families    hampering    reaction    made    genesis    temperatures    energy    quest    rocks    1000    reactivity    stabilized    chemistry    metamorphic    crossroad    hence    members    inorganic    obstacle    functions    stimulate    synthesis    pillars    environment    functional    electrocatalytic    metals    constant    300    form    liquid    operate    yield    joining    mild    establishment    search    science    rate    expanding    ternary    nanosciences    stabilize    materials    nanoscaled    gems    crystallization    pressures    draw    screen   

Project "Genesis" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙999˙577 €
 EC max contribution 1˙999˙577 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-07-01   to  2025-06-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Constant search of new solids is required to advance our knowledge in materials science, and then to stimulate progresses in fields like energy and environment. Genesis aims at expanding the collection of functional inorganic solids as nanoparticles by rational exploratory synthesis. The pivotal idea is to draw inspiration from the processes of solid formation encountered in natural geological processes, in order to set a framework of synthesis conditions prone to yield new nanoscaled solids.

I focus on kinetically stabilized, metastable solids, which yield novel, sometimes surprising properties prone to deliver new functions. However, conventional solid-state syntheses use high temperatures that yield thermodynamic products, hence hampering the synthesis of metastable inorganic solids. This obstacle is even more significant when the solids possess complex structures, as is the case of non-oxides made of transition metals and boron, silicon or phosphorus. The known members of these families are made of covalent bonds that bring unique electrocatalytic properties. This motivates the search of ternary solids joining these elements. Their quest is a synthetic challenge that I will address by the discovery of new metastable covalent solids.

To do so, I will set an original inorganic synthesis methodology by taking inspiration from the processes of crystallization of gems in molten salts, of lavas at high rate and of metamorphic rocks at high pressures to merge nanosciences and solid-state chemistry. Genesis will operate at the crossroad of three pillars: use of the surface energy of nanoparticles to stabilize solids that would be metastable in their extended form; establishment of liquid-phase syntheses at 300-1000 °C in mild conditions; use of high-pressure chemistry to stabilize new solids. Within this frame, I will develop new methods to screen in situ the reaction pathways and I will trigger a new reactivity between boron, silicon, phosphorus and nanoparticles.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GENESIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GENESIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

3DPBio (2020)

Computational Models of Motion for Fabrication-aware Design of Bioinspired Systems

Read More  

MetTraC (2019)

Biocatalytic Methyltransferase Cascades

Read More  


Deciphering and predicting the evolution of cancer cell populations

Read More