Opendata, web and dolomites

RW3D-US SIGNED

Lagrangian Modeling of Denitrification and Nitrous Oxide Production in Soils

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "RW3D-US" data sheet

The following table provides information about the project.

Coordinator
Geological Survey of Denmark and Greenland 

Organization address
address: OSTER VOLDGADE 10
city: KOBENHAVN K
postcode: 1350
website: www.geus.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 219˙312 €
 EC max contribution 219˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2021
 Duration (year-month-day) from 2021-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    Geological Survey of Denmark and Greenland DK (KOBENHAVN K) coordinator 219˙312.00

Map

 Project objective

During the fellowship, the experienced researcher Christopher V. Henri and his supervisors Anker Lajer Højberg and Jens Christian Refsgaard of the Geological Survey of Denmark and Greenland (GEUS) will lead an effort improving the prediction of nitrate levels and of the production of nitrous oxide in soils by developing advanced and accurate modeling techniques. The widespread use of agrochemicals has led to the contamination of many surface and groundwater bodies around the world. Nitrate is a highly problematic contaminant due to its adverse effect on human health and on ecosystems. Understanding the fate of nitrate in the subsurface is, however complex. Indeed, the pollutant undergoes in many cases a sequential biochemically induced degradation, which will reduce levels but also produce nitrous oxide, a potent greenhouse gas. Today, numerical models are essential in the management of such groundwater contamination. Yet, virtually all available numerical solutions for reactive transport in soils use Eulerian methods that present serious numerical issues, which significantly reduce their applicability. The proposed project will represent a breakthrough in our representation of reactive transport in unsaturated soils by developing a stable and reliable Lagrangian method able to simulate reactive systems as the Nitrate biodegradation. The method will also allow to identify key processes triggering reactions in soils, which is primordial to improve our management of groundwater contaminations and to better understand the implication that the subsurface production of nitrous oxide can potentially have on climate. The project will also allow the high-potential applicant to secure a position in Europe and the world-class host institution to maintain excellence through a series transfer of knowledge, training and communication strategy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RW3D-US" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RW3D-US" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

AMPLE (2019)

A Study of the Notion of Ampleness in Model Theory and Tits Buildings

Read More  

Topo-circuit (2019)

Exploring topological phenomenon in RF circuits

Read More