Opendata, web and dolomites

MATBFOB SIGNED

MAThematical modelling of Biofilm FOrmation on Biomaterials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MATBFOB project word cloud

Explore the words cloud of the MATBFOB project. It provides you a very rough idea of what is the project "MATBFOB" about.

considering    healthcare    adhesion    of    bacterial    acknowledged    brief    visualising    couple    implants    mass    modellers    pivotal    initiation    detachment    effect    orthopaedic    model    dynamics    manufacturers    precise    pathogen    employ    microbes    establishment    cardiac    microbiologists    surfaces    surgeons    stages    forces    brand    colonies    suitable    scientists    spread    correlate    observations    catheters    characterizing    play    spatio    tools    structures    mathematically    microbial    monitoring    pacemakers    biomaterial    guided    rate    manner    medical    endeavour    vascular    indwelling    implant    wastewater    gradual    fundamental    microbe    morphology    biomaterials    treatment    exact    urinary    little    transfer    consists    aeruginosa    pseudomonas    nutrient    infections    deciphering    nosocomial    interactions    interaction    experimental    surface    substrate    time    simulate    progression    elucidate    mathematical    models    tool    originate    biofilm    biofilms    temporal   

Project "MATBFOB" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF EXETER 

Organization address
address: THE QUEEN'S DRIVE NORTHCOTE HOUSE
city: EXETER
postcode: EX4 4QJ
website: www.ex.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 337˙400 €
 EC max contribution 337˙400 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2023-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EXETER UK (EXETER) coordinator 337˙400.00

Map

 Project objective

Biofilms play a pivotal role in healthcare-associated infections, especially those related to indwelling medical devices, such as intra-vascular and urinary catheters, cardiac pacemakers and orthopaedic implants. Many mathematical models have been developed to simulate and elucidate the main processes characterizing biofilm growth. Biofilm models have been widely acknowledged as a tool for fundamental understanding of wastewater treatment processes, the morphology of biofilm structures and for deciphering the manner in which they originate through the interaction of a couple of factors like: mass transfer, nutrient availability, detachment forces etc. However there has been very little or no endeavour to develop a suitable model for understanding the exact stages of microbial adhesion on biomaterials and the process of gradual establishment of microbial colonies on medical devices, considering the effect of substrate-microbe interactions . The proposed project consists of a brief and precise experimental part for investigating the initiation and progression of biofilm formation of Pseudomonas aeruginosa, a nosocomial pathogen, on implant surfaces through real-time monitoring. The experimental observations will be used to mathematically model the process of growth of biofilm on a biomaterial surface, considering the effect of interactions of microbes with a specific substrate and the rate of nutrient uptake.The project will employ currently used mathematical tools to model the spatio-temporal dynamics of biofilm formation of Pseudomonas aeruginosa on different biomaterial surfaces.The model will help in visualising the manner and the rate at which bacterial infections can spread on a particular surface and correlate it with the surface properties. This will be the initiation of - model guided substrate design of implants- a brand new concept for implant manufacturers, orthopaedic surgeons, biomaterial scientists, microbiologists and biofilm modellers.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MATBFOB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MATBFOB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More