CELLMULTIVINT

"Combining supramolecular chemistry, physico-chemical characterization and theoretical modeling to understand multivalent interactions at the cell-hyaluronan matrix interface"

 Coordinatore ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES 

 Organization address address: PASEO MIRAMON PARQUE TECNOLOGICO DE SAN SEBASTIAN EDIFICIO EMPRESARIAL C 182
city: SAN SEBASTIAN
postcode: 20009

contact info
Titolo: Mr.
Nome: Alfonso
Cognome: Egaña
Email: send email
Telefono: +34 943 005 300
Fax: +34 943 005 301

 Nazionalità Coordinatore Spain [ES]
 Totale costo 75˙000 €
 EC contributo 75˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-03-15   -   2015-03-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES

 Organization address address: PASEO MIRAMON PARQUE TECNOLOGICO DE SAN SEBASTIAN EDIFICIO EMPRESARIAL C 182
city: SAN SEBASTIAN
postcode: 20009

contact info
Titolo: Mr.
Nome: Alfonso
Cognome: Egaña
Email: send email
Telefono: +34 943 005 300
Fax: +34 943 005 301

ES (SAN SEBASTIAN) coordinator 75˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

host    guest    attachment    supports    multiple    matrix    multivalent    interactions    biological    cell    matrices    mechanisms    surface    functions    chemical    binding    physico   

 Obiettivo del progetto (Objective)

'Multivalent interactions are characterized by the simultaneous binding of multiple ligands on one entity to multiple receptors on another. Multivalency provides the basis for mechanisms of both agonizing and antagonizing biological interactions that are fundamentally different from those available in monovalent systems. Even though multivalent interactions occur broadly in biological systems, they are still poorly understood and assaying them remains a fundamental challenge. In this project, we propose a new approach to reveal the regulatory mechanisms underlying multivalent interactions at cell surfaces. We apply this approach to the investigation of the hydrogel-like matrices that are rich in the polysaccharide hyaluronan (HA) and surround many cell types. The supramolecular organization of the HA-rich matrix and its attachment to the cell surface has been associated to a variety of cellular functions and numerous biological processes, including fertility, inflammation and cancer. Our goal is to understand how multivalent interactions regulate the attachment of HA to the cell surface and the physico-chemical properties of HA-rich matrices, and how these mechanisms are connected to biological functions. To this end, we will develop highly controlled and tunable in vitro model systems that are based on multivalent host-guest interactions. Purpose-designed HA and solid supports will be equipped with host and/or guest functionalities using modern synthetic chemistry. The binding of HA to the supports, and the assembly and physico-chemical properties of HA-rich matrices will be interrogated using a toolbox of surface-sensitive biophysical characterization techniques. Theoretical simulations will help to obtain mechanistic insights into the regulation of multivalent interaction at the cell-HA matrix interface.'

Altri progetti dello stesso programma (FP7-PEOPLE)

PIL-4-E-S&P (2009)

Novel polymeric ionic liquids dor environmental sensing and purification

Read More  

EIW3R (2010)

"The Ethics of Information Warfare: Risks, Rights and Responsibilities"

Read More  

SIWTUNE (2013)

Efficient Synthesis and Design of Reconfigurable MEMS-based Band-Pass Filters in SIW Technology

Read More