ATOMICFMR

FERROMAGNETIC RESONANCE AT THE ATOMIC SCALE

 Coordinatore COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Mr.
Nome: Jean-Christophe
Cognome: Coste
Email: send email
Telefono: 33169089097
Fax: 33169082199

 Nazionalità Coordinatore France [FR]
 Totale costo 193˙594 €
 EC contributo 193˙594 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-06-18   -   2014-06-17

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Mr.
Nome: Jean-Christophe
Cognome: Coste
Email: send email
Telefono: 33169089097
Fax: 33169082199

FR (PARIS 15) coordinator 193˙594.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

ferromagnetic    spin    atom    amr    atomic    electronic    voltage    electrically    reductions    magnetic    transport    size    induced    constrictions    sizes    us    magnetization    dimensional    single    electron    resonance    dc   

 Obiettivo del progetto (Objective)

'Magnetoresistance, giant or tunnel, is at the heart of several ‘spintronic’ components, a new branch of electronics based on the spin of the electron with applications in information technology. Because of the never ending drive for miniaturization, spintronics is about to reach the ballistic regime of electronic transport for which spin dependent properties are still not completely understood. Further size reductions can even be achieved in constrictions of atomic sizes obtained by slowly stretching a nanostructure in a sensitively controlled manner. In these systems, static magnetotransport measurements result from the low-dimensional magnetism of a few relevant atoms. In parallel ferro-magnetic resonance (the magnetization precession induced by a radio-frequency magnetic field) has seen a renewed interest lately as it has been shown that magnetization dynamics interacts with spin currents. Its correlation with DC transport is being widely studied and it is now possible to electrically measure ferromagnetic resonance using the inverse spin Hall effect or the Anisotropic Magneto-Resistance (AMR). The latter can be scaled down to atomic sizes thus giving the possibility to open the unknown field of the dynamical magnetic properties of a single atom in a low dimensional local geometry. We have very recently demonstrated that FMR can be detected in narrow constrictions using the AMR mixed with the RF current auto induced in the magnetic circuit, leading to a measurable DC voltage. After a strong experimental effort, an original setup has been built which allows us to electrically detect the ferromagnetic resonance at 77K in samples that can be broken in real time during the measurements. This unique tool will allow us to study the resonance properties of a single atom in a low-dimensional configuration. It may even allow us to demonstrate that some metals like platinum could become magnetic in these atomic contacts.'

Introduzione (Teaser)

Exploiting electron spin may make it possible to overcome current barriers to size reductions of electronic devices. Highly sensitive measurements of voltage correlated with spin properties have opened a window on mechanisms.

Altri progetti dello stesso programma (FP7-PEOPLE)

STAY-DOWN (2013)

Prohibition of general monitoring obligations and stay-down injunctions in light of the proportionality requirement: a European and comparative study

Read More  

THREE-S (2014)

Smart multi Stimuli-responsive Supports for controlled cell growth

Read More  

RIGIDITY SENSING (2013)

Mechanisms of Cellular Rigidity Sensing

Read More