STORM

Stemming the rising tide: The protective role of saltmarshes

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 309˙235 €
 EC contributo 309˙235 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2015
 Periodo (anno-mese-giorno) 2015-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543

UK (CAMBRIDGE) coordinator 309˙235.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

geomorphological    saltmarshes    geological    marsh    models    vertical    accretion    sea    elevation    surface    rates    sediment    salt    vegetated    coastal    habitats    biological   

 Obiettivo del progetto (Objective)

'Sea level rise and the associated flooding of coastal regions are predicted to lead to severe impacts in many European countries. It is recognised that coastal habitats will play a vital role in mitigating the effects of sea level rise, through increasing sediment accretion rates and thus surface elevation. In Europe, saltmarshes are the primary vegetated coastal habitat and are widely distributed along the European coastline. Both geological evidence from the Holocene, when sea levels rose quickly and significantly and models of contemporary sea level rise suggest that saltmarshes are able to keep pace with sea level rise when sediment supply is sufficient, thus protecting inland habitats from inundation. Saltmarshes have also been shown to be very effective at attenuating wave energy during storm surges. Vertical accretion rates in vegetated coastal habitats are the result of complex interactions between geomorphological (e.g. geological subsidence, sedimentation rates) and biological processes (e.g. root growth and organic matter accumulation and thus require a multidisciplinary research approach. Salt marsh growth and physiology can be an important driver of change in vertical accretion but the lack of data on biological processes, especially belowground, has been identified as a confounding factor for salt marsh models. This project is academically innovative, as it will simultaneously determine the role of biological processes (both above and below ground) and geomorphological processes in the overall changes to vertical accretion under different global change scenarios and incorporate those into existing salt marsh evolution and surface elevation models that predict the vulnerability of coastal areas to sea level rise.'

Altri progetti dello stesso programma (FP7-PEOPLE)

LONG-LIVED PARTICLES (2011)

Search for new long-lived elementary particles decaying to tau leptons in the CMS Experiment

Read More  

SOTRES3 (2014)

Sustainable agriculture: the role of beneficial soil fungi in promoting crop productivity under drought

Read More  

EMP-ECM (2012)

Towards Engineered Multicomponent Polysaccharide Hydrogels for Surrogate Extracellular Matrices

Read More