IMMUNODEATH

Immunogenic cell death in anticancer therapy

 Coordinatore INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120314
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2018-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

 Organization address address: 101 Rue de Tolbiac
city: PARIS
postcode: 75654

contact info
Titolo: Mrs.
Nome: Isabelle
Cognome: Verdier
Email: send email
Telefono: +33 1 48073433
Fax: +33 1 48073426

FR (PARIS) hostInstitution 2˙500˙000.00
2    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

 Organization address address: 101 Rue de Tolbiac
city: PARIS
postcode: 75654

contact info
Titolo: Prof.
Nome: Guido Peter
Cognome: Krömer
Email: send email
Telefono: +33 6 77067943
Fax: +33 1 48073432

FR (PARIS) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

anticancer    stress    types    obligatory    cell    induce    immune    autophagy    hypothesis    signal    explore    cancer    immunogenicity    cellular    death    pre    tumor    cells    immunogenic    pathways    er    mortem    preceded   

 Obiettivo del progetto (Objective)

'We advocate the hypothesis that successful chemotherapeutics can induce a type of tumor cell stress and death that is immunogenic, meaning that the patient’s dying cancer cells serve as a vaccine that stimulates a specific antitumor immune response, which in turn can control (and sometimes even eradicate) residual cancer cells. This is a highly original – and necessarily controversial – “breakthrough” concept since it challenges previous belief that anticancer chemotherapies act solely on the tumor cells, without any significant involvement of the host immune system. Cell death is usually non-immunogenic, and only a small minority of chemotherapeutic agents can induce immunogenic cell death, which - in contrast to classical apoptosis - is preceded by two types of pre-mortem stress, autophagy (which is required for cellular ATP release, an obligatory signal of immunogenicity) and endoplasmic reticulum (ER) stress (which is required for calreticulin [CRT] exposure at the cell surface, another obligatory signal of immunogenicity). Here, we will explore the hypothesis that cancer cell death is only immunogenic if the two pathways of pre-mortem stress, autophagy and ER stress, are simultaneously activated. Thus, we aim at “decoding” the anticancer drug-induced cellular pathways that regulate the immunogenicity of cell death. For this, we will trigger cancer cell death preceded by one or the two types of pre-mortem stress in a “synthetic system” (by genetic manipulation involving inducible transgenes in cancer cells and mice) or by means of selected pharmacological compounds in multiple in vitro and in vivo cancer models, as we monitor the immune-dependent therapeutic response. Moreover, we will investigate the functional links between autophagy, ER stress and immunogenic signaling. Finally, we will explore the translational relevance of these findings on human cancers.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DAMESYFLA (2011)

"Electroweak Symmetry Breaking, Flavor and Dark Matter: One Solution for Three Mysteries"

Read More  

CM TURNOVER (2012)

Uncovering the Mechanisms of Cardiomyocyte Differentiation and Dedifferentiation

Read More  

MOBILIZING4DEMOCRACY (2011)

Mobilizing for democracy: Democratization processes and the mobilization of civil society

Read More