TROPICALCARBON

Tropical forest soil carbon storage and microbial diversity under climatic warming

 Coordinatore THE UNIVERSITY OF EDINBURGH 

 Organization address address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL

contact info
Titolo: Ms.
Nome: Angela
Cognome: Noble
Email: send email
Telefono: +44 131 50 9024
Fax: +44 131 651 4028

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 282˙561 €
 EC contributo 282˙561 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EDINBURGH

 Organization address address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL

contact info
Titolo: Ms.
Nome: Angela
Cognome: Noble
Email: send email
Telefono: +44 131 50 9024
Fax: +44 131 651 4028

UK (EDINBURGH) coordinator 282˙561.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

carbon    storage    contain    climatic    climate    prediction    global    experimental    terrestrial    biology    tropical    temperature    cycling    forest    diversity    soil    forests    chemistry    warming    microbial   

 Obiettivo del progetto (Objective)

'The carbon balance of terrestrial ecosystems is likely to be strongly affected by climate change but the direction and magnitude of the resulting climate feedbacks are uncertain. Soils contain the largest reservoir of global terrestrial carbon so even small fractional changes in total soil carbon cycling could have significant impacts on the concentration of atmospheric carbon dioxide. The response of soil carbon to environmental change is, therefore, a critical regulator of future climate. A widespread prediction is that the projected increase in mean global temperature will increase microbial mineralization of stable soil organic matter and release carbon from soil into the atmosphere; and that the biology (microbial functional diversity) rather than chemistry of soil may be more important in determining long-term carbon storage. This prediction, based on temperate forest and laboratory studies, is of particular concern for tropical forests because they have huge influence on the global carbon cycle, contain 30% of global soil carbon and have the highest -and most threatened- biodiversity of any terrestrial ecosystem. Here, I will use two different experimental approaches (in situ soil warming and soil translocation) in tropical forests in Panama and Peru to examine how soil chemistry and biology regulate soil carbon storage under climatic warming. I will combine experimental findings with a study of soil chemistry and biology for an additional twenty global tropical forest sites to make predictions on the future of soil carbon in global tropical forests under scenarios of climatic warming. This will be the first study of elevated temperature effects on soil carbon dynamics, and of continental-scale patterns in soil microbial diversity, in tropical forests. I will directly address one of the greatest sources of uncertainty in global carbon cycling models by showing how microbial soil carbon cycling in tropical forests will respond to climatic warming.'

Altri progetti dello stesso programma (FP7-PEOPLE)

V-STIR (2010)

Visual-spatiotemporal integration for recognition

Read More  

DISKOMICE (2012)

DISKOmice

Read More  

INTREPID (2009)

Employment Relations in Multinational Companies: Cross National Comparative Analysis

Read More