PREDICTIVECODINGTIME

Interactions between predictive coding and predictive timing in audition: characterizing the role of rhythm in repetition suppression through entrained brain oscillations

 Coordinatore UNIVERSITAT DE BARCELONA 

 Organization address address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Gutierrez
Email: send email
Telefono: 34934035385
Fax: 34934489434

 Nazionalità Coordinatore Spain [ES]
 Totale costo 254˙925 €
 EC contributo 254˙925 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAT DE BARCELONA

 Organization address address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007

contact info
Titolo: Mr.
Nome: Xavier
Cognome: Gutierrez
Email: send email
Telefono: 34934035385
Fax: 34934489434

ES (BARCELONA) coordinator 254˙925.90

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

environment    oscillations    predictive    underlying    line    sensory    representation    dr    acoustic    group    organization    models    investigates    mechanisms    auditory    lines    nonhuman    human    host    neuronal    brain   

 Obiettivo del progetto (Objective)

'The present project seeks to bridge between two important lines of research in current systems neuroscience in order to enlarge our understanding of the brain’s representation of the acoustic environment. The first line investigates the neuronal mechanisms underlying auditory sensory memory trace formation. This constituted the backbone of the applicant’s PhD thesis and as well, is a major emphasis of the research group lead by Dr. Carles Escera at the return host organization of this proposal. The second line investigates the role of low-frequency neuronal oscillations tuned to environmental rhythms in dynamically shaping the excitability of neuronal ensembles, and constitutes a major topic of the research group lead by Dr. Charles Schroeder at the outgoing host organization of this proposal. In this project, both lines of research will be bridged by a series of experiments conducted in both human and nonhuman primates, aiming to unravel the neuronal mechanisms underlying the formation of internal models of the acoustic environment. In short, we seek to characterize the role of brain oscillations entrained to stimulation rhythm (Predictive Timing) in modulating neuronal adaptation to stimulus statistics (Predictive Coding) at cortical and subcortical stages of the auditory pathway, integrating information obtained at a neuronal macro-scale, observed with human electroencephalography, with that obtained at a micro-scale, observed with laminar profiles of post-synaptic potentials and neuronal spiking activity in macaques. The outcomes of this project will provide both a significant step towards understanding the predictive nature of the brain’s representation of sensory events, and new empirical bases for developing theoretical models of perception. These models will in turn, guide further human and nonhuman animal research and contribute to clinical studies on socially and economically relevant psychiatric syndromes such as schizophrenia.'

Altri progetti dello stesso programma (FP7-PEOPLE)

INVABIOECOF (2012)

BIODIVERSITY AND ECOSYSTEM FUNCTIONING: individual-based modelling to understand and predict the consequences of biological invasions

Read More  

ICNCP (2013)

Independence and Convolutions in Noncommutative Probability

Read More  

ANTIFUNGALVSMYCOTOX (2010)

Mechanism of action of anti-fungals against mycotoxigenic species: from molecular to phenotypic efficacy

Read More