EVOMOBIL

"Co-evolution of viruses, plasmids and cells in Archaea: pattern and process"

 Coordinatore INSTITUT PASTEUR 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-02-01   -   2019-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE PARIS-SUD

 Organization address address: RUE GEORGES CLEMENCEAU 15
city: ORSAY
postcode: 91405

contact info
Titolo: Mr.
Nome: Nicolas
Cognome: Lecompte
Email: send email
Telefono: +33 169155589

FR (ORSAY) beneficiary 780˙000.00
2    INSTITUT PASTEUR

 Organization address address: RUE DU DOCTEUR ROUX 25-28
city: PARIS CEDEX 15
postcode: 75724

contact info
Titolo: Mr.
Nome: David
Cognome: Itier
Email: send email
Telefono: +33 1 40 61 34 47

FR (PARIS CEDEX 15) hostInstitution 1˙720˙000.00
3    INSTITUT PASTEUR

 Organization address address: RUE DU DOCTEUR ROUX 25-28
city: PARIS CEDEX 15
postcode: 75724

contact info
Titolo: Prof.
Nome: Patrick Louis
Cognome: Forterre
Email: send email
Telefono: +33 1 45 68 87 91
Fax: +33 1 45 68 88 34

FR (PARIS CEDEX 15) hostInstitution 1˙720˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

reconstruct    transfer    evolutionary    hgt    genomes    life    mvs    viral    gene    questions    dna    domain    cells    pvs    pv    archaeal    horizontal    domains    mv    viruses    cellular    plasmids    evolution    history    species    silico   

 Obiettivo del progetto (Objective)

'Interactions between cells and mobile elements such as viruses and plasmids (the mobilome) have played a major role in life evolution. However, up to now, evolutionary studies have mainly focused on cellular genomes (building species trees). My project is to reconstruct the history of interaction between cells, plasmids and viruses (PVs) at the domain level to answer questions such as: to which extent PVs co-evolved with their hosts? How was cellular history influenced by PVs? What is the main directionality of gene fluxes between PVs and cells? The project will focus on Archaea, the third domains of life, because we only have a robust species phylogeny for this domain. We will perform an exhaustive description of PV families in all available archaeal genomes, as well as free PVs, using a combination of in silico methods and expert analyses. Phylogenetic and network analyses will be used to reconstruct the history of PVs with the objective to quantify horizontal versus vertical evolution and to sort out the web and tree-like components of archaeal history. Preliminary analyses have revealed the importance of horizontal gene transfer (HGT) in archaeal evolution. However, the processes behind these HGT remain mysterious, especially for hyperthermophiles. In parallel to our in silico analyses, we will explore the possible role of membrane vesicles (MV) in HGT. We have shown that archaeal MVs can transfer DNA and that some of them harbour plasmid or viral genomes. We want tackle questions such as: can these MVs transfer DNA between different species, different orders or even different domains? We will also study MV formation and fusion in comparison to those involved in viral infection to better understand possible evolutionary and physiological connections between MV and PV. Production of MV is a universal process and their role in life evolution could have been largely underestimated up to now.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TMAC (2010)

TARGETING TUMOUR ASSOCIATED MACROPHAGES IN CANCER

Read More  

PEPE (2013)

Personal Perception

Read More  

RERE (2010)

Wnt/beta-Catenin Signalling Pathway Controls Reprogramming: The Basis Of Regeneration In Higher Vertebrates

Read More