OPTICMYELIMET

Non-linear Optical Imaging of Myelin and Metabolism in living tissues

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Philippe
Cognome: Cavelier
Email: send email
Telefono: 33145075753

 Nazionalità Coordinatore France [FR]
 Totale costo 194˙046 €
 EC contributo 194˙046 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Philippe
Cognome: Cavelier
Email: send email
Telefono: 33145075753

FR (PARIS) coordinator 194˙046.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

invasive    lesions    optical    microscopy    metabolism    cellular    metabolic       pathology    experimental    single    crucial    myelin    sub    demyelinating    imaging    ms    micro    energetic    opticmyelimet    evolution   

 Obiettivo del progetto (Objective)

'The overall goal of OpticMyeliMet project is to develop non-invasive multi-modal non-linear optical (NLO) methods to simultaneously probe myelin and cellular metabolism during the evolution of Multiple sclerosis (MS) pathology. The myelin sheath plays a crucial role in the vertebrate nervous system, by providing energetic support for neurons. MS is characterized by the occurrence of disruption of myelin (demyelination), as well as cellular energetic failure and neurodegeneration. Therefore the development of remyelination strategies remains a crucial therapeutic objective. MS diagnosis and evolution are usually followed by Magnetic Resonance Imaging (MRI), which allows rapid identification of demyelinating MS lesions but with a poor spatial resolution and specificity for single myelin fibers. Potent label-free and non-invasive optical methods to investigate myelin and metabolism pathology and repair at the sub-cellular scale are the key tools for the analysis of demyelinating lesions in MS. OpticMyeliMet project proposes to develop and optimize an ensemble of advanced optical methods to study normal and pathological myelin and cellular redox states in diverse experimental conditions, and to visualize and longitudinally quantify myelin and metabolic states in the brain cortex. Third Harmonic Generation (THG) and Coherent anti-Stokes Raman Scattering (CARS) allow the visualization of myelin sheets without labeling, while two-photon microscopy and Fluorescence Lifetime Microscopy (FLIM) allows the quantification of the intrinsic metabolic coenzyme NADH and the metabolic state of single cells. The project aims to achieve a multi-parametric imaging of myelinated tissues on a 'multiscale' level, providing an experimental and theoretical framework to relate the imaging data to the myelin organization at the macromolecular (sub-µm) to tissue (tens-to-hundreds of µm) scales.'

Altri progetti dello stesso programma (FP7-PEOPLE)

HE&GS (2011)

"The role of Glutamine synthetase in Liver Failure: Molecular, Functional and Therapeutic modulation"

Read More  

OPTEMUS (2014)

Optimising Turbo-Spindle Efficiency for Machining at Ultra-High Speed

Read More  

PTM-FLEX (2014)

Synthetic biology approach for the design of new-to-nature peptide-based antibiotic molecules

Read More