Development of Electrochemical Reactors Using Dehydrogenases for Enantiopure Synthon Preparations


 Organization address address: CAMPUS
postcode: 66041

contact info
Titolo: Ms.
Nome: Mareike
Cognome: Schmitt
Email: send email
Telefono: 49-681-9592 3366
Fax: 49-681-9592 3370

 Nazionalità Coordinatore Germany [DE]
 Sito del progetto
 Totale costo 3˙723˙963 €
 EC contributo 2˙749˙909 €
 Programma FP7-NMP
Specific Programme "Cooperation": Nanosciences, Nanotechnologies, Materials and new Production Technologies
 Code Call FP7-NMP-2007-SMALL-1
 Funding Scheme CP-FP
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-07-01   -   2011-06-30


# participant  country  role  EC contrib. [€] 

 Organization address address: CAMPUS
postcode: 66041

contact info
Titolo: Ms.
Nome: Mareike
Cognome: Schmitt
Email: send email
Telefono: 49-681-9592 3366
Fax: 49-681-9592 3370

DE (SAARBRUECKEN) coordinator 0.00

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Michel
Cognome: Mauvais
Email: send email
Telefono: -383855980
Fax: +33-3 83352381

FR (PARIS) participant 0.00

 Organization address address: 16 Avenue Pey Berland
city: PESSAC
postcode: 33607

contact info
Titolo: Prof.
Nome: Bernard
Cognome: Berdeu
Email: send email
Telefono: +33-5-4000 2712
Fax: +33-5-4000 6633

FR (PESSAC) participant 0.00
4    IEP GmbH

 Organization address address: "Rheingaustrasse, 190-196"
city: Wiesbaden
postcode: 65203

contact info
Titolo: Dr.
Nome: Antje
Cognome: Gupta
Email: send email
Telefono: +49-611-962 4636
Fax: +49-611-962 4634

DE (Wiesbaden) participant 0.00

 Organization address address: DUMLUPINAR BULVARI 1
city: ANKARA
postcode: 6800

contact info
Titolo: Prof.
Nome: Ayhan Sitki
Cognome: Demir
Email: send email
Telefono: +90-312-210 32 42
Fax: +90-312-210 3200

TR (ANKARA) participant 0.00


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

nano    chemicals    fine    oxidation    dehydrogenase    surfaces    enantio    active    cofactor    reactor    final    virtually    enzymes    chemical    regeneration    emission    chemistry    pharmaceutical    efficient    little    convert    pure    selectivity    erudesp    flow    mediators    electrode    hydrogen    waste    addition    selective    scientists    structured    purity    manufactured    electrochemical    co    surface    dehydrogenases    compound    cell    immobilised    bound    synthesis    reactors    tested    organic    compounds    scaled   

 Obiettivo del progetto (Objective)

'The aim of the project is the development of electrochemical reactors for the manufacture of fine chemicals with dehydrogenases as a process with almost zero waste emission. The production of enantio pure compounds with high EE’s can be achieved by using dehydrogenases as biocatalysts, because they express high enantio selectivity in ketone reduction, combined with broad substrate spectra by some of these enzymes. These proteins will be engineered for improved catalytic performance using the tools of molecular evolution, modelling, structure prediction, and crystallography. As these dehydrogenases typically require cosubstrate regeneration by aid of a second enzymatic reaction, we are looking for the alternative solution of an electrochemical approach for the regeneration of reduced cofactors. If all active compounds can be functionally immobilized on the electrode surface the constructed reactor would convert the educt in the input flow to the product in the output flow avoiding any contaminations. All necessary components like the mediator, the cofactor and the dehydrogenase will be bound to nano or meso structured electrodes (for increased active surface area) resulting in biofunctionalised surfaces with tailored properties at the nanoscale. Optimization of the electrode materials and surfaces, of the mediators and the required spacers as well as the surface bound dehydrogenase activities will result in electrochemical reactor moduls which can deliver enantio pure synthons for desired compounds in pharmaceutical or agrochemical applications. The obtained data will increase our knowledge on nanostructured catalysts and inorganic-organic hybrid systems. Cheap cofactor regeneration, easy product purification, high selectivity and avoidance of organic solvents will be the advantages of such processes to satisfy the demands of green chemistry in respect of environmentally friendly, flexible and energy efficient productions.'

Introduzione (Teaser)

EU-funded scientists are developing highly selective synthetic chemistry routes employing miniaturised reactors with immobilised biological enzymes to produce fine chemicals useful in food and pharmaceutical industries.

Descrizione progetto (Article)

Chemical synthesis is a tricky business. The multiple steps leading from reactants to final product can result in the production of numerous compounds of little use to the chemical designer. These must then be removed to achieve high purity of the compound of interest. One of the most likely co-products of chemical synthesis is the enantiomer (or mirror image) of a compound. Despite similiarities, the enantiomers have little or no activity in the targeted application.

Dehydrogenases are protein enzymes that catalyse the removal of hydrogen atoms in an enantio-selective way. EU-funded scientists are exploiting dehydrogenases in a system relying on hydrogen ion exchange for the reduction of ketones to alcohols. The project 'Development of electrochemical reactors using dehydrogenases for enantiopure synthon preparations' (ERUDESP) is using an electrochemical process to regenerate intermediates (co-factors). The entire system is immobilised on the electrode surface of a nano-structured mini-reactor to convert virtually all inputs to outputs without contamination or loss.

During the second reporting period, scientists developed and up-scaled efficient immobilisation techniques for catalytically active species, chemical mediators and co-factors at the electrode surface. A micro-reactor cell was tested with a full-scale porous electrode for conversion of sorbitol to fructose, exhibiting higher currents than previously ever recorded for such a set up. In addition, a new multi-cell array was designed, manufactured and validated, and electro-coating methods were up-scaled.

Several kinds of bioelectrocatalytic systems were manufactured and tested. As the project was extended to include electroenzymatic oxidation in addition to reduction, the demonstrator has been suitably modified and calibrated. Test cases included the production of low-calorie sweeteners and molecules relevant to the pharmaceutical industry.

The final bioelectrochemical reactor represents a functional and highly selective system for oxidation and reduction reactions dependent on the choice of immobilised enzymes. ERUDESP technology should find widespread application in the selective production of fine chemicals with very high purity and virtually no waste emission.

Altri progetti dello stesso programma (FP7-NMP)


Multiscale computational approach to the design of polymer-matrix nanocomposites

Read More  


Monitoring public opinion on Nanotechnology in Europe

Read More  

CAEC (2008)

Continuous Annular Electro-Chromatography

Read More